U ## MICROFORM DISPLAY PARAMETERS AND SYSTEMS IN THE SHIPBOARD ENVIRONMENT Prepared for the Naval Research Laboratory Washington, D. C. ONR Contract No. N00014-70-C-0384. WEW This document has been approved for public release and sale; its distribution is unlimited. # NATIONAL TECHNICAL INFORMATION SERVICE Reproduction in whole or in part is permitted for any purpose of the United States Government eauthoriou endimered March 1971 FAIRFAX, VIRGINIA 22030 METERSTER AND THE REAL PROPERTY OF THE PROPERT 478 669 Boot Available Copy # MICROFORM DISPLAY PARAMETERS AND SYSTEMS IN THE SHIPBOARD ENVIRONMENT - I. Empirical Investigation of Display Legibility - Survey of Available Microform Equipment - III. Potential Shipboard Applications Raymond E. Reilly, Ph. D. Psytronics, Inc. arid C. L. Tipton Naval Research Laboratory Details of illustrations in this document may be better studied on microfiche Prepared for the Navai Research Laboratory Washington, D.C. ONR Contract No. N00014-70-C-0384 March 1971 ### **FOREWORD** This study effort was conducted under the technical direction of the Naval Research Laboratory (Code 4020) under sponsorship of the Naval Orgnance Systems Command (ORD-03). Products or services discussed in this report are included as illustrative examples and no endorsement, either positive or negative, is intended. Conclusions drawn are those of the authors and are not represented to be the views of the Government. #### **EXECUTIVE SUMMARY** This study was concerned with potential applications for microform in the shipboard environment. The first phase was comprised of two experiments to determine the effect of various parameters on the legibility of rearprojected displays. The parameters were image resolution, size, brightness, color, ambient light, and frequency and amplitude of ambient vibration. The results indicated that image resolution was a critical factor in legibility, followed by image brightness and size. Image vibration amplitude of 1/8-inch over the range of 0 to 30 Hz degraded legibility to a small but measureable degree while 1/4-inch amplitude rendered the display illegible for all practical purposes. Display color (red vs. white) had no effect on legibility for displays of equal brightness. Image polarity (positive vs. negative) also had no effect on legibility. The parameters tested interacted in a complex manner indicating that all factors must be considered together in selecting or designing equipment for a given application. Tables 8 through 11, beginning on page 60, show relative performance coefficients for various parametric combinations. The coefficients are proportions of reading speed and accuracy relative to reading hand-held typewritten copy under good lighting conditions. A Company of the Comp The following features are recommended for microform viewers intended for shipboard use: - (1) Maximum screen brightness of at least 80 ft-L; - (2) Continuous brightness adjustment control from zero to maximum screen brightness; - (3) Non-glare type viewing screen; - (4) Focus controls which are not overly sensitive; - (5) Provisions for protection of the viewing screen from extraneous light/glare sources such as a shield or curtain arrangement; - (6) Provision for use of a red filter for operating under red-light conditions. Brightness adjustment or installation of the red filter should not require the user to view in illuminated projection lamp or other brightly illuminated element of the system; - (7) Readers to be used under red-light conditions should be light-tight, i.e., ro light leaks; - (8) Controls and contours should be designed to minimize sharp edges, corners, and projections which may injure a user upon impact (such impact could occur during high speed maneuvers or in rough waters); - (9) Microform equipment should be isolated from ambient ship vibration to preclude degradation of image legibility. Small amplitude vibration may be amplified in the optical system to produce image vibration of as much as 1/4-inch. The second phase of the study (p. 71) was a survey of available microform readers, reader-printers, camera and film processing equipment, and information retrieval systems. Major U.S. and foreign manufacturers were surveyed. Microform devices ranging from simple portable viewers costing only a few dollars to sophisticated, fully automasic retrieval systems employing video dissemination. Cost of the latter per system is in the \$100,000 to \$200,000 range. The third and final phase (p. 142) describes the kinds of information used in different departments of various types of thips, the current format of the information, and an appropriate type of the information could be converted. Regarding potential microform applications about ship, the following conclusions and recommendations are made: - (1) The current volume and use of Lard cony aboard ships would appear amenable to conversion to microform (micromation) in many areas; - (2) With proper study, it should be possible to justify micromation in terms of cost, operating efficiency, and increased file security; - (3) Current microform technology provides a range of equipment and capabilities which can be readily matched to user requirements from carrier type ships on down; - (4) Microform affords specific advantages in the area of document security and anticompromise measures. ### **ACKNOWLEDGFMENTS** The valuable contributions of the following individuals to this research effort are gratefully acknowledged: Mr. James Reynolds, Special Studies Group, Naval Research Laboratory; Mr. Ed Remen, Northern Virginia Community College; and Mr. Tom Latterner, Control Data Corporation. Appreciation is expressed to those manufacturers who so generously cooperated with their time and information in the second phase of the study. Finally, sincere thanks are due to S. H. Reilly and R. A. Linehan of Psytronics, Inc., whose efforts played a major part in whatever success this effort may enjoy. ### TABLE OF CONTENTS | | Page | |---|------| | FOREWORD | i | | SUMMARY | ii | | ACKTOWLES DEMENTS | ٧, | | TABLE OF CONTENTS | vi | | LIST OF TABLES | x | | LIST OF FIGURES | xii | | INTRODUCTION | 1 | | PART I. EMPIRICAL INVESTIGATION OF DISPLAY LEGISILITY | 4 | | Shipboard Vibration | 4 | | Shipboard Ambient Light | 5 | | Additional Factors | 6 | | Relationship of Display Characteristics | | | to Reading Speed and Accuracy | 6 | | Experiment No. 1 | 7 | | Method | 7 | | Apparatus | 7 | | Stimulus Transparencies | 9 | | Stimulus Content | 10 | | Testing Environment | 10 | | Subjects | 10 | | Dependent Measures | 11 | | Procedure | 13 | | Statistical Design | 14 | | Results | 16 | | Image Size (S) | 23 | | Image Resolution (R) | 28 | | Image Brightness (P) | 2.8 | ### TABLE OF CONTENTS (cont.) | | Page | |--|------| | Vibration Frequency (F) | 28 | | Vibration Amplitude (A) | 28 | | Ambient Illumination (I) | 28 | | Image Resolution x Image Size (R x S) | 29 | | Image Brightness x Image Size (B x S) | 29 | | Image Brightness x Ambient Illumination (B x I) | 29 | | Ambient Illumination x Image Size (I x S) | 31 | | Vibration Amplitude x Vibration Frequency (A x F) | 31 | | Vibration Frequency x Image Size (F x S) | 32 | | Vibration Frequency x Image Resolution (F x R) | 32 | | Image Brightness x Vibration Frequency (B x F) | 32 | | Vibration Amplitude x Image Size (A x S) | 32 | | Vibration Amplitude x Image Resolution (A x R) | 34 | | Vibration Amplitude x Image Resolution x Image Size (A x R x S) | 34 | | Vibration Amplitude x Image Brightness x Image Resolution (A x B x R) | 36 | | Vibration Amplitude x Image Brightness x Vibration Frequency (A x B x F) | 36 | | Vibration Amplitude x Vibration Frequency x Image Size (A x F x S) | 38 | | Vibration Amplitude x Vibration Frequency x Image Resolution (A x F x R) | 38 | | Vibration Frequency x Image Resolution x Image Size (F x R x S) | 38 | | Experiment No. 2 | 40 | | Method | 40 | | Statistical Design | 41 | | Results | 41 | | Image Size (S) | 52 | | Image Resolution (R) | 52 | | annergo recommende tribut a a a a a a a a a a a a a a a a a a a | _ | Phone is a service to the control of ### TABLE OF CONTENTS (cent.) | | | Page | |-------------|---|------| | | Vibration Frequency (F) | 52 | | | Vibration Amplitude (A) | 52 | | | <pre>Image Resolution x Image Size (R x S)</pre> | 52 | | | Vibration Frequency x Image Resolution (F x R) | 54 | | | Image Color & Vibration Frequency (C x F) | 54 | | | Vibration Amplitude x Vibration Frequency (A x F) | 54 | | | Vibration Amplitude x Image Size (A x S) | 54 | | | Vibration Frequency x Image Resolution x Image Size (f x R x S) | 56 | | | Vibration Amplitude x Image Resolution x Image Size (A x r. x S) | 56 | | | Vibration Amplitude x Image Brightness x Image Resolution (A x B x R) | 58 | | DISCUSSION | | 59 | | CONCLUSIONS | § | 68 | | PART II, S | SURVEY OF AVAILABLE MICROFORM EQUIPMENT | 71 | | Sim | nmary of Microform Equipment | 71 | | | st of United States Manufacturers | 125 | | | st of Foreign Manufacturers | 129 | | | ightness and Resolution of | 20.5 | | | nmercial Microform Readers | 130 | | Mid | croform Retrieval Systems | 133 | | | Manual Systems | 133 | | | Semi-automatic Systems | 133 | | | Randomatic | 134 | | | Kodak Miracode System | 134 | | | 3M Company, Model 400 Page Search Reader-Printer | 136 | TANK CHARLES OF THE RESIDENCE OF THE PARTY O ### TABLE OF CONTENTS (cont.) | | Page | |--|------| | Fully Automatic Systems | 136 | | Mosler 410 | 136 | | Sanders-Diebold, Inc | 140 | | Computer Output Microfilm (COM) Systems | 140 | | DatagraphiX, Inc | 140 | | PART III. POTENTIAL SHIPBOARD APPLICATIONS | 142 | | Micromation of Intelligence and Classified Information | 155 | | Advantages of
Classified Information in Microform | 156 | | Reduced Volume and Weight | 156 | | File Security | 156 | | Emergency Destruct Capability | 157 | | STUDY CONCLUSIONS AND RECOMMENDATIONS | 159 | | BIBLIOGRAPHY | 161 | Figure 8 X-ray diffraction 0-20 scan of a PLMNT film by MOCLD on e-sapphire Figure 9 shows the electro-optical measurement result of a recently developed PLMNT film sample. In order to have a comparable value for evaluating materials, the average slope at small positive field was used to calculate the effective linear EO coefficient R (pm V). For this sample, the EO coefficient was measured to be 353pm V, which is already 18 times higher than LiNbO₃ at low frequencies. BATi will continue to improve these EO films for this and other applications. Figure 94 lectro-optic loop of a recently developed PLMN1 film ### Instrument for uniformity measurement of EO layer For future development of this technology, especially for imaging application, the spectral response has to be very uniform (such as 0.2%) within the entire aperture. One major issue controlling the uniformity is the material uniformity of the EO layers. We are developing a metrology method to measure the uniformity with nanometers accuracy, which is the phase-shifting white light interferometer. The white-light polarization interferometer is based on ### LIST OF TABLES | Table No. | | Page | |-----------|---|------| | 1, | Vibratory Displacement of Environmental Vibration | 5 | | 2. | Analysis of Variance on Reading Rate (Experiment No. 1) | 17 | | 3. | Analysis of Variance on Error Rate (Percent Correct) | 20 | | 4. | Analysis of Variance on the Combined Score (P) | 24 | | 5. | Analysis of Variance on Reading Rate (Experiment No. 2) | 43 | | 6. | Analysis of Variance on Error Rate (Percent Correct) | 46 | | 7, | Analysis of Variance on the Combined Score (P) | 49 | | 3. | Normalized Performance Scores Relative to Reading
Typed Copy (200 words per minute) Averaged Across
Three Image Sizes | 60 | | 9. | Normalized Performance Scores Relative to Reading
Typed Copy (200 words per minute) for 0.67X
Projection of 12 Point, 12 Pitch Type | 61 | | 10. | Normalized Performance Scores Relative to Reading
Typed Copy (200 words per minute) for 1.00X
Projection of 12 Point, 12 Pitch Type | 62 | | 11. | Normalized Performance Scores Relative to Reading
Typed Copy (200 words per minute) for 1.33X
Projection of 12 Point, 12 Pitch Type | 63 | | | | | | | EXHIBITS | | | 1(a, b). | Values of the Test Parameters | 70 | ### LIST OF TABLES (cont.) | Table No. | | <u> Page</u> | |-----------|--|--------------| | 12. | Survey of Microvorm Reader Equipment (United States) | 72 | | ±3. | Survey of Microform Reader-Printer Equipment (United States) | 90 | | 14. | Survey of Microform Camera Equipment (United States) | 95 | | 15. | Survey of Microform Developer/Processor Equipment (United States) | î01 | | 16. | Survey of Microform Duplicator Equipment (United States) | 105 | | 17. | Survey of Microform Reader Equipment (Foreign Manufacturers) | 111 | | 18. | Survey of Microform Reader-Printer Equipment (Foreign Manufacturers) | 117 | | 19. | Survey of Microform Camera Equipment (Foreign Manufacturers) | 120 | | 20. | Survey of Microform Developer/Processor
Equipment (Foreign Manufacturers) | 123 | | 21. | Survey of Microform Duplicator Equipment (Foreign Manufacturers) | 124 | | 22. | Sample Display Resolution and Screen Brightness of Microform Readers | 131 | | 23. | Types of Information and Current Format
Used by Ships | 143 | | 24. | Combatant Ships (Warships) | 145 | | 25. | Non-Combatant Ships (Auxilliary Ships) | 149 | | 26. | Suitable Microform for Various Types of
Information Used Aboard Ships | 153 | ### LIST OF FIGURES | Figure No. | | Page | |------------|--|------| | 1. | Cutaway view of the display system. | 8 | | 2. | Mixed analysis of variance design (Experiment No. 1). | 15 | | 3. | Reading performance as a function of display parameters: (3) image size, (b) image resolution, (c) image brightness, (d) vibration frequency, (e) vibration amplitude, (f) ambient illumination. | 27 | | 4. | Reading performance as a function of two-parameter interactions: (a) image brightness x image resolution, (b) image brightness x image size, (c) image brightness x ambient illumination (d) ambient illumination x image size, (e) vibration amplitude x vibration frequency, (f) vibration frequency x image size. | 30 | | 5, | Reading performance as a function of two-parameter interactions: (a) vibration frequency x image resolution, (b) image brightness x vibration frequency, (c) vibration amplitude x image size, (d) vibration amplitude x image resolution. | 33 | | б. | Reading performance as a function of three-parameter interactions: (a, b, c) image brightness x vibration frequency x image size, (d, e, f) vibration amplitude x image brightness x image resolution. | 35 | | 7. | Reading performance as a function of three-parameter interactions: (a) vibration amplitude x image brightness x vibration frequency, (b) vibration amplitude x vibratio frequency x image size, (c) vibration amplitude x vibratio frequency x image resolution, (d, e, f) vibration frequenx image resolution x image size. | on | | 8. | Mixed analysis of variance design (Experiment No. 2). | 42 | | 9. | Reading performance as a function of display parameters: (a) image size, (b) image resolution, (c) vibration frequency, (d) vibration amplitude. (e) image resolution with image size as the parameter, (f) vibration frequency with image size as the parameter. | 53 | 的时候是这个女子的一个,这个女子,这一个女子,我们是一个女子,我们是一个女子,我们是一个女子,我们是一个女子,我们是一个女子,我们是一个女子,我们是一个女子,他 ### LIST OF FIGURES (cont.) | Figure No. | | Page | |------------|---|------| | 10. | Reading performance as a function of parameter interactions: (a) image color x vibration frequency, (b) vibration amplitude x vibration frequency, (c) vibration amplitude x image size, (d, e, f) vibration frequency x image resolution x image size. | 55 | | 11. | Reading performance as a function of parameter interactions: (a, b, c) vibration amplitude x image resolution x image size, (d, e, f) vibration amplitude x image brightness x image resolution. | 57 | | 12. | Randomatic Data Systems, Inc., systems range from small desk top models to large models about the size of an executive desk. | 135 | | 13. | 3M Company, Model 400 Page Search Reader-Printer. | 137 | | 14. | Simplified flow diagram of the Mosler 410 Information System. | 138 | | 15. | Basic components of a COM system. | 141 | ### INTRODUCTION The information explosion of the past three decades has made storage and retrieval a critical problem in industry, education, and the military. For the Navy, the problem is amplified because of time, space, and weight constraints aboard ship. In routine and combat situations, information flow is the life blood of our modern systems. The bulk paper medium seems no longer consistent with the speed and complexity of the systems it is intended to support. Large volumes of printed matter, e.g., reports, manuals, books, diagrams, engineering drawings, etc., are difficult and inefficient to file and retrieve. Furthermore, in military operations, there is the need for the safe handling of classified information, and at times, the necessity for rapid and thorough destruction of classified materials to prevent their compromise. One approach to the problem which appears to hold much promise is conversion to microform systems. Bulk is reduced by more than 90 percent; production and dissemination of information on film is considerably faster and less costly than paper; storage and retrieval is fast, accurate, and can be fully automatic if so desired. Certain modern microform retrieval systems permit random access to any given document. Also, the files may be browsed using one or more descriptors. These systems can do many things as well or better than a computer and at considerably less cost. Using a computer as a filing system and printing press is often inappropriate and expensive. For many businesses and institutions, there appears to be every reason to convert to microform. For certain other applications, e.g., aboard ship, a range of factors must be carefully considered before decisions in this regard can be made. First, one would have to specify or analyze user requirements in the operational setting. Next should be a survey of available equipment and microform systems. This equipment would have to be evaluated with respect to its ability to meet user requirements and to function well in designated operational environments. Cost effectiveness would be an important factor and would include not only the cost of the equipment but the entire conversion process which requires organizing, coding, and updating the information to be handled by the microform system. Depending upon the particular application, general purpose equipment may be found to be adequate. Or, there may be the need for development of a dedicated system, one tailored to specific user needs and functions. A total systems approach to a problem such as this, while highly desirable, is not always possible because of financial and time
constraints. It is possible, however, to make an effective start by addressing certain fundamental aspects of the problem which will provide a foundation for further work. This was the orientation of the present study. In reviewing the technical and trade literature in the microform field, it became apparent that there is the need for basic human engineering data which would aid in the design or selection of items of equipment. This need is aptly described by one expert in the field (Teplitz, 1970) as follows: "Even though microfilm has been available for almost 40 years, it is just now coming into its own, being accepted on a broad enough basis to provide a large market for equipment manufacturers, thus making new equipment design feasible. The number of microfiche users is increasing to the point that careful human factors studies of the critical limitations and weaknesses of available products and services have become essential. "Basic problems do, in fact, exist. These problems are amenable to solution, but only when and if the powerful tools of empirical studies and human factors applications to these problems can be applied to all aspects of the man-machine relationship." A key man-machine interface in microform systems is the film reader, the point where the user interacts with the system and obtains the information he needs from the display. It is important to know how the display parameters interact to affect legibility. As part of the present study, two experiments were conducted to obtain quantitative information on these interactions. Further, it is necessary to know the characteristics of available readers and microform equipment. The second portion of the study consisted of a survey of currently available microform equipment. The survey included major U.S. and foreign manufacturers. In addition to summarizing specifications on available cameras, film processors and duplicators, reader-printers, and readers, descriptions of representative storage and retrieval systems were prepared. Although a comprehensive analysis of shipboard applications was beyond the scope of this effort, an attempt was made in the third phase of the study to categorize the types of information processing, and storage and retrieval activities characteristic of shipboard environment. This conceptualization provides an overview of the generic functions involved and helps to shed light on potential shipboard applications. The equipment survey and generic description of shipboard information processing activities together with the empirical study of legibility formed the basis of conclusions and recommendations concerning shipboard application of microform systems. #### PART I ### EMPIRICAL INVESTIGATION OF DISPLAY LEGIBILITY Conditions imposed by the shipboard environment were considered in selecting the parameters to be investigated. Aboard ship, the environment differs in several important aspects from commercial or institutional settings for which most microform equipment is designed. One factor is the almost continuous presence of vibration. Another is the range of ambient light conditions, including low light levels required for operator maintenance of dark adaptation. ### Shipboard Vibration Vibration aboard ship is described as follows in MIL-STD-167B(Ships) dated 11 August 1969, Paragraph 5.1.1.1 <u>Steady State</u>. "All machinery and equipment installed aboard naval ships will ordinarily be subjected to varying frequencies and amplitudes of vibration, possibly for long periods of time during which the machinery and equipment must continue to perform their normal functions. Principal causes of steady state shipboard vibration are (a) propeller blade excitation, and (b) unbalanced forces of propeller and sharting. The vibration frequencies encountered aboard ship vary from zero to approximately 33 hertz (Hz), (2000 cycles per minute (c.p.m.)). In some of the latest surface ships, frequencies of up to 50 Hz (3000 c.p.m.) have been observed. The severity of vibration on a ship depends upon the type of ship and the location of equipment within the ship's structure." Bitter beneved the standard of ### Paragraph 5.1.1.2 Transient. "Vibration measurements for steady state conditions are usually made in relatively quiet seas and during steady speed operations. However, ships do not operate under these conditions for any extended length of time as the speed, heading, and sea state may change. A change in any one of these conditions such as sea state has a great effect on the longitudinal, vertical, and athwartship vibration levels. The increase in displacement amplitude is almost proportional to wave height." Table 1 below from the above MIL Standard shows shipboard vibration for steady state conditions. TABLE 1 Vibratory Displacement of Environmental Vibration | Frequency Range
(Hz) | Table Amolitude
(inch) | | | |-------------------------|---------------------------|--|--| | 4 to 15 | 0.030 ± 0.006 | | | | 16 to 25 | $.020 \pm .004$ | | | | 26 to 33 | .010 ± .002 | | | | 34 to 40 | .005 ± .001 | | | | 41 to 50 | .003 ± .000 | | | | | | | | It may be noted that the steady state amplitudes indicated may be increased by several times in rough sea and during maneuvers. If such vibration acted upon a critical element of an optical projection system such as a prism or mirror, image displacement would be proportional to the projection distance involved. Thus, it is conceivable that shipboard vibration could be amplified sufficiently to severely degrade legibility of the projected image. ### Shipboard Ambient Light Depending upon the location and use of the microform reader, a wide range of ambient light conditions may be imposed. It may not be possible to increase or decrease ambient light levels because of requirements for other activities in the immediate vicinity. In some instances, shielding of the display may be possible while for other applications, it may be necessary for several people to view the display simultaneously, making shielding impractical. Another consideration aboard ship is the need in certain circumstances for the potential users of microform readers to maintain their dark adaptation. Pilots in the ready room and flight deck personnel aboard a carrier are two examples. A relevant question here is whether use of red overlays, goggles, or other means may be employed while using a viewer and what effect this might have on display legibility. ### Additional Factors Along with the foregoing considerations are the basic factors of image size, brightness, polarity, and resolution. An important question is the manner in which these basic parameters interact with each other and the shipboard variables to affect display legibility. The experiments conducted in the present study were designed to provide definitive answers to these questions. ### Relationship of Display Characteristics to Reading Speed and Accuracy Experiments were conducted to determine the effect of several display parameters on legibility as measured by reading speed and accuracy. Because of the large number of variables involved, it was necessary to perform two separate experiments. In the first experiment, the effect of image brightness, size, resolution, polarity, vibration frequency and amplitude, and ambient light were examined. In the second experiment, the variable of display color (white vs. red) was introduced and variation in ambient light was eliminated. Also, the second experiment used a smaller range of image brightness. All other variables and test procedures were the same as in Experiment No. 1. Different subjects were used in each experiment. ### Experiment No. 1 ### Method Apparatus. A special display system was constructed to permit precise manipulation of the experimental display parameters. As illustrated in Figure 1, the system was comprised of a Kodak Carousel projector, Model 650, equipped with a projection Ektanar, F/3.5, 3-inch objective lens. The image beam was interrupted by two front surface mirrors and reflected onto the back of a Polacoat rear-projection screen. The first mirror was mounted on an electronically operated driver which caused the mirror (and display image) to oscillate at selected frequencies and amplitudes. The second mirror was stationary. A filter mount was located directly in front of the projector objective lens. Image/background color was varied by inserting a red filter in this mount in the second experiment. A separate control panel, connected by cable to the display unit, permitted remote control of the system. Brightness of the display image (projector lamp brightness) was controlled by a continuously adjustable triac circuit along with appropriate neutral density filters to minimize color temperature shift at low brightness levels. A 500 watt projector lamp produced a maximum screen brightness of 130 ft-L on the viewing side. The projection screen was recessed 32 inches within a four-sided enclosure. White incandescent lamps were recessed behind plexiglass diffusing screens in the top surface of the enclosure to control ambient light. Ambient light intensity was adjustable at the main control panel of the device. A separate continuously adjustable triac circuit was employed to control the ambient lamps. (Note: Ambient light was varied in Experiment No. 1; in Experiment No. 2, the ambient lights remained off.) The ambient lamps Kodak No. 24 Red. C..taway view of the display system. Figure 1. provided an average maximum illumination of 100 ft-c on the enclosure walls which were painted mat white. Surface reflectance was 0.80, yielding a maximum surround brightness of 80 ft-L. A headrest was suspended from the upper enclosure surface to provide a constant viewing distance of 28 inches to the center of the screen. (This distance is normally used in human factors specifications on displays.) A blackout curtain, suspended from two arms extending from the top of the enclosure, ensured exclusion of
extraneous light. As indicated in Figure 1, the projection system controlled vibration, color, image brightness, and ambient light. The remaining variables were controlled through preparation of the stimulus transparencies. Stimulus Transparencies. Variation in image size, resolution, and polarity was established photographically in the production of the 35 mm test transparencies. Original material was typed on good quality white bond paper using an IBM Selectric typewriter. The type was 12 point, 12 pitch, IBM Letter Gothic (Code 005). Each page contained a single paragraph of 100 words. The typed pages were photographed with a Nikon FTN Camera using a Macro-Nikor F/2 preset lens. The camera was mounted on an animatograph calibrated in .0001 inches. Ektachrome ERR film was used to achieve the desired degree of resolution and density. (Initial attempts to work with black and white film were unsuccessful because of film grain and loss of resolution in the reversal process.) DECTED SECTION OF A Negative slides (light letters on dark background) were produced as original negatives. To achieve the positive slides (dark letters on light background) Kodolith negatives were made using 4 mil polyester film to avoid shrinkage or expansion. These negatives were then photographed and the resulting negatives were developed yielding the desired positive transparencies. Thus, both sets of transparencies, positive and negative, were originals, and therefore, not subjected to an intermediate reversal process. The resulting transparencies were of high resolution and high contrast. Stimulus Content. Twenty-seven paragraphs were excerpted from a high school level textbook (Copeland, 1964). A wide range of subject matter was selected (physics, government, sociology, geography, psychology, physiology, etc.) to reduce possible effects due to content familiarity and to provide a reasonably wide vocabulary. Care was taken to exclude paragraphs with unusual words and those containing excessive repetition of words, phrases, or proper nouns. In general, the materials were considered to be factual, informative, and reasonably interesting. Two sets of the 27 paragraphs were produced as 35 mm transparencies, one set was positive, the other negative. Each set of 27 transparencies represented three levels of size and three levels of resolution with three slides within each cell of the 3 x 3 matrix. <u>Testing Environment</u>. Testing was conducted in an 8' x 12' room which was quiet and had no windows. Lights were turned off during testing. A fan in the projector cooling system tended to mask any ambient noise which might on occasion have been present. Subjects. The subjects were male and female junior college students attending Northern Virginia Community College. All were paid volunteers. Subjects ranged from 17 to 27 years in age. Each subject was screened using a Titmus Industrial Vision Tester. The test included near and far visual acuity (binocular and monocular), vertical and lateral phoria, color vision, and stereopsis (binocular depth perception). Requirements for 20/30 far visual acuity, 14/16 near visual acuity, and normal color vision were established arbitrarily and individuals who failed to reach these criteria were excluded from participation. Also, any individuals exhibiting problems of visual over- or under-convergence were excluded. 6 0.02° I is the initial phase offset. The combined function for the five stage filter is $$\prod (1 - \sin (\frac{1.25 \times 10^{5} u}{2}) \cos (\frac{1.25 \times 10^{5} (1 + \phi)}{2}))$$ Since our initial condition is arbitrary, we made no assumptions at all about the target functions, so the fitting speed varies, depending on situations. But for most common situations, it takes less than one second to finish the fitting. For those slower cases, appropriate assumptions about the target functions can significantly speed up the fitting. Some typical fitting examples are shown below with fitting time indicated on upper-right corners Forty-eight subjects were selected at random for Experiment No. 1; twenty-four for Experiment No. 2; and twenty served as control subjects reading only from typed materials. The latter subjects provided baseline data on paragraph reading times and difficulty. Dependent Measures. Because of the nature of the task, it was necessary to use more than a single dependent measure. Two logical measures were reading rate and errors. Reading rate was defined as the number of words read correctly (i.e., words read minus misread words) divided by time taken for the total words read. For example, if a subject read 100 words in 30 seconds but misread two words, his reading rate would be (100-2)/30. Errors were considered to be of two kinds. One was where a word was misread, e.g., "over" read as "often". Omissions or words simply not attempted was the second type of error. The range of display legibility varied from excellent to unreadable. Where the display was clearly legible, errors would be negligible and reading rate would be an adequate measure of performance. Where display legibility was poor and only a small portion of the words could be read, errors would be an appropriate measure reflecting the difficulty of the task. For moderate legibility, however, neither measure by itself would adequately describe performance as related to task difficulty. For example, if a subject read 30 words correctly in 15 seconds, his reading rate would be 3C/15 or two words per second. This, however, does not indicate that more than two thirds of the paragraph could not be read. Similarly, the emission score would be 7G percent. But this does not tell how quickly the legible words were read. Clearly, both measures are necessary to present an accurate picture of task difficulty, i.e., display legibility. Both were obtained and analyzed separately. However, to facilitate analysis and interpretation of the data, a combined score (P) was computed using both reading rate and errors/omissions. The combined score was the product of reading rate and the proportion of the paragraph read correctly. In treating the performance scores, two additional operations were performed. First, reading rate in words per second was converted to words per minute. Second, each score was adjusted for the reading difficulty of each paragraph apart from any experimental treatment effects. Although an attempt was made to select paragraphs of equal reading difficulty, it was felt that small differences would still exist. To permit appropriate adjustment of the performance scores, baseline measures were obtained for each paragraph. Twenty subjects, not participating in the experiments proper, were asked to read each of the 27 test paragraphs cut loud from the original typewritten copy. The mean reading rate (errors were less than 1 percent) was then calculated for each paragraph based on these 20 subjects. The overall mean reading time (averaging across subjects and paragraphs) was 30 seconds. The mean time for each paragraph (averaging across the 20 subjects) ranged from 26 seconds to 36 seconds. A weight was then computed for each paragraph to normalize its average reading rate with respect to the overall mean of 30 seconds. For example, if the mean time for a given paragraph was 28 seconds, the weight (w) was calculated as 30/28 or 1.07. The score for each subject on that paragraph would then be multiplied by 1.07. If, for example, the mean time for another paragraph was 35 seconds, its weight would be 30/35 or 0.86. In computing the combined rate and error scores (P), errors were converted to accuracy scores so that all measures would have the same positive relationship to pe formance. For example, an error/omission score of 30 percent corresponds to an accuracy score of 70 percent. All reading rate scores were adjusted according to this weighting process. The combined score was computed as shown in Equation 1. $$P = kw (RA)$$ (Equation 1.) where: P = combined score (reading rate corrected for display legibility (accuracy of reading) and paragraph difficulty). Units are words per minute. k = 60, to convert words per second to words per minute. w = weight correcting for paragraph reading difficulty as explained above. R = observed reading rate, words per second. A = reading accuracy (proportion of paragraph read correctly). Procedure. The subject was seated at the apparatus. Tape recorded instructions were presented after which the experimenter provided any necessary clarification as to procedures. Subjects were told that the experiment was attempting to find out how the quality of a projected image was related to reading speed and accuracy. They were simply to read the projected paragraphs out loud as quickly, clearly, and accurately as possible without running words together. Each paragraph was numbered. The subject was to call off the number and then immediately commence reading out loud. 是在自己的,这个人,这个人,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的 In the instructions, subjects were encouraged to continue trying to read even though they might lose the "sense" or the paragraph because of poor viewing conditions. If this happened, they were to scan a line at a time and report any words or phrases which they could still read. Upon completing the paragraph, the subject was to say "next", whereupon the experimenter presented the next slide. A wire harness worn around the neck held a small microphone in place approximately 3 inches in front of the subject's mouth. As the subject read, his voice was recorded on an individual tape cartridge for later analysis. Before beginning the test proper, each subject was given a typewritten paragraph and asked to read it out loud quickly but in a normal manner to check the recording level. This task served as a warm-up and practice trial. Then, the subject faced the apparatus and placed his forehead against the padded head rest. He was presented a total of 27
paragraphs in predetermined, random sequence. The only change necessary during testing was in vibration frequency. Nine of the slides were presented without vibration, nine were at 15 Hz vibration, and nine were at 30 Hz. The remaining test conditions, including vibration amplitude, were preselected before testing began and did not change during testing of a given subject. 中国的一个人,这一个人,是一个人,他们是一个 ### Statistical Design A mixed analysis of variance design, as shown in Figure 2, was selected to permit evaluation of the interactions while keeping the size of the experiment within reason. In this mixed design, subjects operating under a given combination of treatment conditions are exposed to all combinations of the remaining variables. Those treatments which are common to all subjects are termed "within-subjects" variables. Those divided among subjects are termed "between-subjects" variables. In this experiment, resolution, image size, | | T | 3 | | | |----------------|----------------|---|--|------------------| | | æ _E | 51 52 | | | | F ₂ | 22. | S ₂ S ₃ | lues.) | | | | | 3 51 | Sy de son sy va | | | | R | \$1 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 | A = Vibration Amplitude B = Image Brightness F = Vibration Frequency I = Ambient Illumination P = Image Resolution S = Image Size S = Subjects Chefr to Exhibit 1(a), page 70, for parameter values.) | | | | 32 | 2 53 | tion Lion Ltion Ltion Ltion Ltion Ltion Ltion Ltion Polar Reso Size Ctb For | | | | ~ | 5,1 8 | Vibration Image Britange Resimage Polimage Resimage Siz Subjects for to Extended Extended For Extended For | | | F ₁ | R2 | 52 53 | | | | | | 3 51 | | | | | R ₁ | 1 52 5. | | | | - | R ₃ | S ₂ S ₃ S | | | | | | 3 51 | | | | F ₀ | R2 | 52 5 | | | | | | 3 | | P ₂) | | | R_1 | S | + + + + + + + + + + + + + + + + + + + | for | | L | | 5,1 | <u> </u> | cated | | | | | 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 | replicated for | | | | | B 23 B 23 | | | | | | * " | (Design is | 是是是是一种,我们是是是一种,我们就是一种,我们也是一种,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们是 第一个人,我们是是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 Figure 2. Mixed analysis of variance design. (Experiment No. 1) A CANADA SERVICE STATE OF THE PROPERTY and vibration frequency were within-subjects variables. The betweensubjects variables were image brightness, polarity, ambient illumination, and vibration amplitude. Values of the test parameters are presented in Exhibit 1(a) (page 70) which may be folded out for easy reference. ### Results An analysis of variance was done on each of the dependent measures, (1) reading rate, (2) error rate converted to percent correct, and (3) the combined score defined by Equation 1 discussed earlier. The data for all three measures were also plotted and visually inspected. Generally, the statistically significant effects fell in the expected directions. Performance was better for displays of high resolution and brightness and large size. Performance was also better in the absence of vibration and under low ambient illumination. Initial inspection and statistical analysis revealed that image polarity (positive vs. negative) did not differentially affect performance nor did polarity interact with any other variable. Polarity was, therefore, eliminated from further consideration in this experiment. The data were reanalyzed ignoring polarity. oblice or and the contraction of Table 2 presents the analysis of variance summary on reading rate. Results of the analysis of error rate (percent correct) are shown in Table 3. It may be seen that certain statistically significant terms are common to both tables while others are not. As explained previously, each of these measures by itself does not adequately reflect task difficulty, and therefore, these findings are presented as a matter of only passing interest. The combined score gives the best indication of the manner in which overall reading performance varied in response to the different display conditions. A TABLE 2 Analysis of Variance on Reading Rate | Source | df | MS | Error
Term | F | |-------------------------------|------|------------|---------------|------------| | Between Subjects | 47 | | | | | Ambient Illumination (I) | 3 | 33872.89 | (1) | 3.11* | | Image Brightness (B) | 2 | 137911.02 | (1) | 12.65** | | Vibration Amplitude (A) | 1 | 1052607.60 | (1) | 96.57** | | B x I | 6 | 39078.61 | (1) | 3.59# | | Axī | 3 | 5821.79 | (1) | | | AxB | 2 | 2111.12 | (1) | | | A×B×I | 6 | 10250.39 | (1) | . - | | (1) Ss/A x B x I (Error Term) | 24 | 10900.20 | | | | Within Subject: | 1248 | | | | | Vibration Frequency (F) | 2 | 284504.51 | (2) | 171.32** | | Image Size (S) | 2 | 132789.51 | (3) | 187.07** | | Image Resolution (R) | 2 | 174455.52 | (4) | 327.47** | | FxS | 4 | 17862.25 | (5) | 34.08** | | FxR | 4 | 2028.35 | (6) | 2.96* | | RxS | 4 | 45511.59 | (7) | 144.40** | | FxI | 6 | 1935.74 | (2) | → m | | BxF | 4 | 3991.33 | (2) | 2.40 | | AxF | 2 | 265919.95 | (2) | 160.13** | | I x S | 6 | 1662.59 | (3) | 2.34* | | 8 x S | 4 | 2842.41 | (3) | 4.00** | | AxS | 2 | 30352.50 | (3) | 42.76** | | IxR | 6 | 778.26 | (4) | 1.45 | | B x R | 4 | 774.97 | (4) | 1.45 | | A×R | 2 | 15439.50 | (4) | 28.98** | TABLE 2 (cont.) Analysis of Variance on Reading Rate | Source | df | MS | Error
<u>Term</u> | <u></u> | |------------------------------------|----------------|----------|----------------------|---------| | Hithin Cubinsta /cont) | | | | | | Within Subjects (cont.) F x I x S | 12 | 617.73 | (5) | 1.18 | | BxFxS | 8 | 1122.62 | (5) | 2.14 | | | | | | | | AxfxS | 4 | 8225.43 | (5) | 15.69** | | FxIxR | 12 | 548.88 | (6) | 1.00 | | BxFxR | 8 | 742.79 | (6) | 30.1 | | AxFxR | 4 | 4361.80 | (6) | 6.37** | | IxkxS | 12 | 475.00 | (7) | 1.51 | | BxRxS | 8 | 305.73 | (7) | ~- | | AxRxS | 4 | 15646.11 | (7) | 49.64** | | F x R x S | 8 | 3218.22 | (8) | 6.11** | | BxfxI | 12 | 1064.27 | (2) | ~- | | AxfxI | 6 | 1444.89 | (2) | ~ ~ | | AxBxF | 4 | 5680.59 | (2) | 3.42* | | BxIxS | 12 | 608.00 | (3) | ~ ~ | | AxIxS | 6 | 373.99 | (3) | | | AxBxS | 4 | 1184.70 | (3) | 1.67 | | BxIxR | 12 | 721.44 | (4) | 1.35 | | AxIxK | 6 | 309.98 | (4) | | | AxBxR | 4 | 1503.00 | (4) | 2.82* | | BxFxIxS | 24 | 1352.93 | (5) | 2.58** | | AxFxIxS | 12 | 2112.52 | (5) | 4.03** | | AxBxFxS | 8 | 2089.42 | (5) | 3.98** | | BxFxIxR | 2 4 | 749.07 | (6) | 1.09 | | | 12 | 773.35 | (6) | 1.13 | | AxfxIxR
AxBxfxR | 12
8 | 905.39 | (6) | 1.37 | TABLE 2 (cont.) Analysis of Variance on Reading Rate | Source | df | MS | Error
Term | <u></u> | |---|-------|---------|---------------|---------| | Within Subjects (cont.) | | | | | | BxIxRxS | 24 | 211.32 | (7) | ~- | | AxIxRxS | 12 | 430.07 | (7) | i.36 | | AxBxRxS | 8 | 697.27 | (7) | 2.21* | | FxIxRxS | 24 | 750.27 | (8) | 1.42 | | BxFxRxS | 16 | 332.89 | (8) | | | A x F x R x S | 8 | 4607.82 | (8) | 8.75** | | AxBxFxI | 12 | 1798.78 | (2) | 1.08 | | AxBxIxS | 12 | 874.39 | (3) | 1.23 | | AxBxIxR | 12 | 1163.47 | (4) | 2.18* | | AxBxFxIxS | 24 | 1251.10 | (5) | 2.39** | | AxBxFxIxR | 24 | 639.52 | (6) | | |
AxBҳIxRxS | 24 | 362.22 | (7) | 1.15 | | B x F x I x R x 3 | 48 | 630.73 | (8) | 1.20 | | AxfxIxRxS | 24 | 667.30 | (8) | 1.27 | | AxBxFxRxS | 16 | 1094.68 | (8) | 2.08* | | AxBxFxIxRxS | 48 | 524.19 | (8) | | | Error Terms | | | | | | (2) Ss x F/A x B x I | 48 | 1660.61 | | | | (3) Ss x S/A x B x I | 48 | 709.85 | | | | (4) Ss \times R/A \times B \times I | 48 | 532.74 | | | | (5) Ss x F x S/A x B x I | 96 | 524.19 | | | | (6) Ss x F x R/A x B x I | 96 | 684.35 | | | | (7) Ss x R x S/A x B x I | 96 | 315.17 | | | | (8) Ss x F x R x S/A x B x | ! 192 | 526.81 | | | The control of co p<.01 TABLE 3 Analysis of Variance on Error Rate (Percent Correct) | Source | <u>df</u> | MS | Error
Term | <u> </u> | |-------------------------------|-----------|---------|---------------|----------| | Between Subjects | 47 | | | | | Ambient Illumination (I) | 3 | .6194 | (1) | 4.34* | | Image Brightness (3) | 2 | 2.0182 | (1) | 14.17** | | Yibration AmplituGe (A) | 1 | 27.2977 | (1) | 191.70** | | B x I | 6 | .6179 | (1) | 4.34** | | A x I | 3 | .2838 | (1) | 1,99 | | AxB | 2 | .7861 | (1) | 5.52* | | AxBxI | 6 | .2010 | (1) | 1.41 | | (1) Ss/A x B x I (Error Term) | 24 | .1424 | | | | Within Subjects | 1248 | | | | | Vibration Frequency (F) | 2 | 7.1544 | (2) | 143.37** | | Image Size (S) | 2 | 5.5344 | (3) | 345.90** | | Image Resolution (R) | 2 | 3.2954 | (4) | 177.17** | | FxS | 4 | 1.0921 | (5) | 82.73** | | F × R | 4 | .4869 | (6) | 46.82** | | R × S | 4 | . 2945 | (7) | 12.37** | | F x I | 6 | .0590 | (2) | 1.18 | | BxF | 4 | .3157 | (2) | 6.33** | | AxF | 2 | 6.4616 | (2) | 129.49** | | IxS | 6 | .0248 | (3) | 1.55 | | B x S | 4 | .0162 | (3) | 1.01 | | AxS | 2 | 3.6974 | (3) | 231.09** | | ΙxR | 6 | .0093 | (4) | | | B x R | 4 | .0909 | (4) | 4.89** | | A×R | 2 | 1.4601 | (4) | 78.50** | | F × I x S | 12 | .0271 | (5) | 2.05* | TABLE 3 (cont.) Analysis of Variance on Error Rate (Percent Correct) | Source | _df | MS | Error
Term | <u> </u> | |-------------------------|-----|-------|---------------|----------| | Within Subjects (cont.) | | | | | | BxFxS | 8 | .0257 | (5) | 1.95 | | AxfxS | 4 | .8507 | (5) | 64,45** | | FxIxR | 12 | .0223 | (6) | 2.14* | | BxFxR | 8 | .0148 | (6) | 1.42 | | $A \times F \times R$ | 4 | .3127 | (6) | 30.07** | | IxRxS | 12 | .0141 | (7) | | | BxRxS | 8 | .0091 | (7) | | | $A \times R \times S$ | 4 | .2588 | (7) | 10.87** | | FxRxS | 8 | 0485 | (8) | 4.4 | | BxFxI | 12 | .0857 | (2) | 1.72 | | AxFxI | 6 | .0572 | (2) | 1.15 | | AxBxF | 4 | .1892 | (2) | 3.79* | | 3 x 1 x 3 | 12 | .0114 | (3) | | | AxIxS | 6 | .0335 | (3) | 2.09 | | AxBxS | 4 | .0857 | (3) | 5.36 ** | | BxIxR | 12 | .0058 | (4) | | | AxIxR | 6 | .0181 | (4) | | | AxBxR | 4 | .0300 | (4) | 1.51 | | вхғхіхѕ | 24 | .0306 | (5) | 2.32** | | AxfxIxS | 12 | .0396 | (5) | 3.00** | | AxBxFxS | 8 | .0575 | (5) | 4.36** | | BxFxIxR | 24 | .0251 | (6) | 2.41** | | AxFxIxR | 12 | .0201 | (6) | 1.93* | | AxBxFxR | 8 | .0199 | (6) | 1.91 | | BxIxRxS | 24 | .0172 | (7) | ** | | AxIxRxS | 12 | .0120 | (7) | | TABLE 3 (cont.) Analysis of Variance on Error Rate (Percent Correct) | Source | df | MS | Error
Term | <u> </u> | |---|---------|-------|---------------|----------| | Within Subjects (cont.) | | | | | | A x B x R x \$ | 8 | .0448 | (7) | 4.07** | | FxIxRxS | 24 | .0185 | (8) | 1.68* | | BxfxRxS | 16 | .0161 | (8) | 1.46 | | AxfxRxS | 8 | .0605 | (8) | 5.50** | | AxBxFxI | 12 | .0785 | (2) | 1.57 | | AxBxIxS | 12 | .0433 | (3) | 2.71** | | AxBxIxR | 12 | .0371 | (4) | 1.99* | | AxBxFyIxS | 24 | .0317 | (5) | 2.40** | | AxBxFxIxR | 24 | .027ถ | (€) | 2.60** | | AxBxIxRxS | 24 | .0096 | (7) | | | BxFxIxRxS | 48 | .0099 | (8) | | | AxfxIxRxS | 24 | .0088 | (8) | | | AxBxFxRxS | 16 | .0368 | (8) | 3.34** | | AxBxFxIxRxS | 48 | .0122 | (8) | 1.12 | | Error Terms | | | | | | (2) Ss x ^r /A x B x I | 48 | .0499 | | | | (3) Ss \times S/A \times B \times I | 48 | .0160 | | | | (4) Ss x R/A x B x I | 48 | .0186 | | | | (5) Ss x F x S/A x B x I | 96 | .0132 | | | | (6) Ss x F x R/A x B x I | 96 | .0104 | | | | (7) Ss x R x S/A x B x I | 96 | .0238 | | | | (8) Ss x F x R x S/A x B > | (I 192 | .0110 | | | ^{*} p<.05 ^{**}p<.01 summary of the analysis of variance based on the combined score is presented in Table 4. Also, all graphs presented below are based on the combined measure. In a study of this kind, there tends to be a considerable amount of interaction among the experimental variables. For example, letters of different size may all be equally legible (with respect to a given performance criterion) under static viewing conditions; but when vibration is introduced, they become legible to different degrees. The prevailing level of contrast or image brightness may further differentially affect legibility in conjunction with letter size and vibration. In such instances, one has less interest in the "main effects" of each individual variable, that is, in the performance means for a given variable averaged across all other conditions, than in performance observed under specific combinations of treatment variables, namely, the significant interaction effects. On the other hand, there may be strong effects due to specific variables which tend to maintain their general form when plotted as elements of an interaction. For this reason, we will briefly examine the significant main effects before proceeding to the interactions. Values for each variable are presented in Exhibit 1(b) (page 70). The exhibit may be folded at for easy reference. Image Size (S). Figure 3(a) shows reading performance for the three sizes of image used. It may be seen that S_2 is associated with the best performance followed closely by S_3 (largest size used) and then S_1 (smallest size used). What is not revealed here but is apparent in the size x resolution interaction is that S_2 tended to be less vulnerable to reduced resolution levels and vibration than did S_1 or S_3 . Reasons for this are suggested later in the discussion of interactions involving size, resolution and vibration. TABLE 4 Analysis of Variance on the Combined Score (P) | Source | df | <u>MS</u> | Error
Term | <u> </u> | |-----------------------------|-------|------------|---------------|----------| | Between Subjects | 47 | | | | | Ambient Illumination (I) | 3 | 37151.89 | (1) | 3.15* | | Image Brightness (B) | Z | 146114.90 | (1) | 12.38** | | Vibration Amplitude (A) | 1 | 1236388.32 | (1) | 104.78** | | ВхІ | 6 | 40815.55 | (1) | 3.46* | | AxI | 3 | 4545.02 | (1) | | | A × B | 2 | 3378.45 | (1) | | | AxBxI | 6 | 11584.46 | (1) | | | (1) Ss/A x B x I (Error Ter | m) 24 | 11799.38 | | | | Within Subjects | 1248 | | | | | Vibration Frequency (F) | 2 | 339295.72 | (2) | 214.35** | | Image Size (S) | 2 | 161558.92 | (3) | 193.29** | | Image Resolution (R) | 2 | 185405.39 | (4) | 356.06** | | FxS | 4 | 21797.20 | (5) | 13.25** | | FxR | 4 | 2114.84 | (6) | 2.96* | | R x S | 4 | 42051.59 | (7) | 102.76** | | FxI | 6 | 915.12 | (2) | ••• | | ВхF | 4 | 4123.99 | (2) | 2.60* | | AxF | 2 | 312172.59 | (2) | 197.22** | | ĭxS | 6 | 2114.15 | (3) | 2.53* | | B x S | 4 | 3657.11 | (3) | 4.38** | | AxS | 2 | 38738.76 | (3) | 46.35** | | ΙxR | 6 | 700.58 | (4) | 1.34 | | B x R | 4 | 1203.63 | (4) | 2.30 | | A × R | 2 | 13039.11 | (4) | 24.91** | | FxīxS | 12 | 787.39 | (5) | | では、大学のでは、大学 TABLE 4 (cont.) Analysis of Variance on the Combined Score (P) | Source | df | MS | Error
<u>Term</u> | <u>F</u> | |-------------------------|----|----------------|----------------------|----------| | Within Subjects (cont.) | | | | | | BxFxS | 8 | 1592.11 | (5) | | | AxFxS | 4 | 9702.99 | (5) | 5.90** | | FxIxR | 12 | 711.03 | (6) | | | BxFxR | १ | 9 93.05 | (6) | 1.39 | | AxfxR | .1 | 3588.56 | (6) | 5.02** | | IxRxS | 12 | 445.46 | (7) | 1.09 | | BxRxS | 8 | 259.21 | (7) | | | Axrxs | 4 | 26218.87 | (7) | 64.07** | | FxRxS | 8 | 4922.36 | (8) | 9.06** | | BxFxI | 12 | 1276.86 | (2) | | | AxfxI | 6 | 1407.90 | (2) | | | AxBxF | 4 | 4579.51 | (2) | 2.89* | | BxIxS | 12 | 664.76 | (3) | | | AxIxS | 6 | 459.43 | (3) | | | AxBxS | 4 | 2053.86 | (3) | 2.46 | | BxIxR | 12 | 731.74 | (4) | 1.40 | | AxIxR | 6 | 364.16 | (4) | ** | | AxBxR | 4 | 2061.48 | (4) | 3.94** | | BxFxIxS | 24 | 1485.16 | (5) | | | AxfxIxS | 12 | 2043.52 | (5) | 1.24 | | AxBxFxS | 8 | 2242.02 | (5) | 1.36 | | BxFxIxR | 24 | 895.72 | (6) | 1.25 | | AxFxIxR | 12 | 947.41 | (6) | 1.33 | | AxūxFxR | 8 | 1261.77 | (6) | 1.77 | | BxIxRxS | 24 | 230.32 | (7) | | | AxIxRxS | 12 | 600.11 | (7) | 1.47 | TABLE 4 (cont.) Analysis of Variance on the Combined Score (P) | Source | <u>df</u> | MS | Error
Term | <u> </u> | |------------------------------|--------------|---------|---------------|----------| | Within Subjects (cont.) | |
 | | | AxBxRxS | 8 | 946.60 | (7) | 2.31* | | FxIxRxS | 24 | 728.62 | (8) | 1.34 | | BxFxRxS | 16 | 401.89 | (8) | | | AxfxRxS | 8 | 7026.96 | (8) | 12.94** | | AxBxFxI | 12 | 2304.40 | (2) | 1.46 | | AxBxIxS | 12 | 1)05.22 | (3) | 1.32 | | AxBxIxR | 12 | 31.35 | (4) | 2.73** | | AxBxFxIxS | 24 | 1338.91 | (5) | | | AxBxFxIxR | 24 | 793.88 | (6) | 1.11 | | AxBxIxRxS | 24 | 441.28 | (7) | 1.08 | | BxFxIxRxS | 48 | 682.04 | (8) | 1.26 | | AxfxIxRxS | 24 | 719.00 | (8) | 1.32 | | AxBxFxRxS | 16 | 1210.48 | (8) | 2.23** | | AxBxFxIxRxS | 48 | 629.85 | (8) | 1.16 | | Error Terms | | | | | | (2) Ss x F/A x B x I | 48 | 1582.87 | | | | (3) Ss x S/A x B x I | 48 | 835.85 | | | | (4) Ss x R/A x B x I | 48 | 523.52 | | | | (5) Ss x F x S/A x B x I | 96 | 1644.58 | | | | (6) Ss x F x R/A x B x I | 96 | 714.22 | | | | (7) Ss x R x S/A x B x I | 96 | 409.22 | | | | (8) Ss x F x R x S/A x B x I | 1 9 2 | 543.20 | | | | * n< .05 | | | | | ^{*} p<.05 ^{**}p<.01 Reading performance as a function of display parameters: (a) image size, (b) image resolution, (c) image brightness, (d) vibration frequency. (e) vibration amplitude, (f) ambient illumination. Figure 3. The state of s Image Resolution (R). Figure 3(b) shows the effect of image resolution when performance scores are averaged across all othe reatment conditions. Generally, performance improved as image resolution improved. Image Brightness (B). Figure 3(c) presents reading performance for the three levels of image brightness used. Overall, performance improved as image brightness increased. However, there are important limitations which are shown later in the brightness x ambient illumination interaction. The "best" level of image brightness depends upon ambient viewing conditions among other things. <u>Vibration Frequency (F)</u>. Figure 3(d) shows the effect of vibration frequency on reading performance, averaged across vibration amplitude and the remaining test variables. Vibration produced a strong decrement in performance. The apparently small difference between 15 Hz and 30 Hz, when tested separately, was statistically significant at the .05 level. <u>Vibration Amplitude (A)</u>. Figure 3(e) shows performance under the two levels of vibration amplitude. While 1/3-inch vertical oscillation of the image had a very small effect, 1/4-inch amplitude had a devastating effect, particularly for the small image size (S₁). (See vibration amplitude x image size in Figure 5(c).) Ambient Illumination (I). Figure 3(f) shows performance as a function of ambient illumination. Performance was somewhat better at low ambient illumination levels as would be expected. Again, the effect is differentiated at different levels of image brightness. (See image brightness x ambient illumination in Figure 4(c).) Image Resolution x Image Size (R x S). Figure 4(a) shows the combined effect of image resolution and image size on reading performance. It may be seen that at the lowest resolution level (10 cycles/mm), the smallest image size used (\S_1) is associated with the poorest performance. The largest size (\S_3) is next, and the middle sized image (\S_2) is best. At the highest resolution level (60 cycles/mm), \S_3 is best, \S_2 next, and \S_1 poorest. It must be noted at this point that in all subsequent graphs, where data have been averaged across levels of resolution, S_2 appears superior to S_1 and S_3 . It owes this apparent superiority to the better performance associated with it at the lower levels of resolution used. Image Brightness x Image Size (B x S). Figure 4(b) shows reading performance as a function of image brightness with image size as the parameter. As can be seen, there is improvement in performance with increased image brightness. The larger two image sizes (S_2 and S_3) improved at a slightly faster rate than S_1 . Image Brightness x Ambient Illumination (B x 1). Figure 4(c) presents reading performance as a function of ambient illumination with image brightness as the parameter. Performance associated with all image brightness levels used showed a general decline as ambient illumination increased from 25 ft-c to 100 ft-c. The reversal of the $\rm B_1$ (low image brightness) curve between 50 and 100 ft-c is considered as chance variability in the data. An interesting reversal occurs between 25 ft-c and 0 ft-c \cdot ier illumination. Performance associated with the dim image ($B_1 = 4$ ft-L) becomes best while that for the brightest image ($B_3 = 80$ ft-L) becomes poorest. The magnitude of the effect is small here but it can readily be ve.ified by looking at the test display. Under low ambient illumination (0 ft-c), the 80 ft-L image appears too bright—there is irradiation or spilling of light around Reading performance as a function of two-parameter interactions: (a) image brightness x image resolution, (b) image brightness x ambient illumination, (d) ambient illumination x image size, (e) vibration amplitude x vibration frequency, (f) vibration frequency x image size. Figure 4. The second of th READ ING PERFORMANCE the edges of each letter. Further, when the bright image is vibrated under low ambient illumination, it prolongs persistence of the retinal image which tends to decrease legibility. An image of low brightness is definitely more legible and more comfortable to read under low ambient light. Ambient Illumination x Image Size (I \times S). Shown in Figure 4(d) are the combined effects of ambient illumination and image size. As ambient illumination increases, performance associated with the three sizes tends to decline with the largest decline occurring over the 0 to 50 ft-c range. Performance for the small image (S_1) is consistently poorer than for the other two sizes and does not change appreciably across levels of ambient light. The curves tend to converge at the highest level of ambient illumination. THE PROPERTY OF O Vibration Amplitude x Vibration Frequency (A \times F). Reading performance is shown in Figure 4(e) as a function of vibration frequency with vibration amplitude as the parameter. The two data points at the left (0 frequency) represent viewing conditions in which no vibration was present. Introduction of 1/8-inch amplitude oscillation did not markedly affect performance when averaged across all other conditions. The 1/4-inch amplitude vibration, however, was highly disruptive. These data were retested omitting the 0 frequency (no-vibration) data. The A x F interaction was still statistically significant (F=8.55; d.f.=1, 24). Although the effect is small when the control data are ignored, the results suggest that the disruptive effects of vibration depend conjointly on frequency and amplitude. <u>Vibration Frequency x Image Size (F x S)</u>. Figure 4(f) shows clearly a differential effect of vibration frequency on reading performance for different sizes of image. Performance declines noticeably between zero-frequency (no-vibration) and 15 Hz. From 15 Hz to 35 Hz, the S_2 and S_3 curves show no further drop while the S_1 (small image size) continues to decline. Vibration Frequency x Image Resolution (F x R). Figure 5(a) shows reading performance as a function of vibration frequency with image resolution as the parameter. The separate effects of resolution and vibration frequency are clear but the basis of their statistically significant interaction is not as apparent. Most likely, it is because there is more separation between the curves at 15 Hz and 30 Hz than at 0 Hz (novibration) but the difference, as demonstrated here, would not seem to be of practical consequence. Image Brightness x Vibration Frequency (B x F). The effect of vibration frequency on reading performance for different levels of image brightness is shown in Figure 5(b). It can be seen that all three brightness curves decline between 0 and 15 Hz and tend to diverge. From 15 to 30 Hz, the higher brightness curves (B₃ and B₂) tend to level off while B₁ (lowest brightness) apparently continues to decline. Vibration Amplitude x Image Size (A x S). The differential effect of vibration amplitude on the legibility of different sized images is shown in Figure 5(c). The A_0 curve represents the no-vibration control condition (same data as $F_0 = 0$ Hz). It may be seen that there was essentially no difference in performance between the no-vibration condition (A_0) and 1/8-inch amplitude vibration (A_1). However, under 1/4-inch amplitude, performance for all image sizes was reduced substantially. Performance 是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们们是一个时间,他 Reading performance as a function of two-parameter interactions: (a) vibration frequency x image resolution, (b) image brightness x vibration frequency, (c) vibration amplitude x image size, (d) vibration amplitude x image resolution. Figure 5. THE SECTION OF THE PROPERTY for image sizes S_3 and S_2 was reduced by 50 percent and the S_1 images were rendered illegible (performance scores reduced by 90 percent relative to the no-vibration condition). <u>Vibration Amplitude x Image Resolution (A x R)</u>. Figure 5(d) shows reading performance as a function of image resolution for the different conditions of vibration amplitude. As in the A x S interaction above, there is essentially no difference between the A_0 (no-vibration) and A_1 (1/8-inch amplitude) curves. Introduction of 1/4-inch amplitude oscillation reduced performance at high and medium resolution levels by more than 50 percent while at low resolution the display was rendered virtually illegible. Vibration Amplitude x Image Resolution x Image Size $(A \times R \times S)$. The interaction of vibration amplitude, image resolution, and image size is shown in Figures 6(a), 6(b), and 6(c). Each figure represents a different level of image resolution. Looking at Figure 6(a) which represents the lowest resolution level used, it may be seen that under 1/4-inch vibration amplitude
the smallest image (S_1) reflects the poorest performance, with S_3 (largest size) next, and S_2 best. The same relationship among image sizes holds for the zero and 1/8-inch vibration conditions with little difference between the latter two curves. Moving to Figure 6(b), the next higher resolution level used, the A_0 and A_1 curves still fall close together but there is now less difference across the three sizes of image. Under the 1/4-inch vibration (A_2) , it can be seen that S_2 and S_3 have been helped somewhat by the increased resolution but S_1 is still essentially illegible. Finally at R₃, Figure 6(c), it can be seen that A₀ (no-vibration) and A₁ (1/8-inch vibration) are clearly separated with A₀ representing consistently better performance. Also, there is the suggestion that at the high level of resolution and low vibration amplitude, the smaller image (S₁) is associated with better reading performance. When 1/4-inch vibration (A₂) is Reading performance as a function of three-parameter interactions: (a, b, c) image brightness x vibration frequency x image size, (d, e, f) vibration amplitude x image brightness x image resolution. Figure 6. introduced, the degradation which results is inversely related to image size and again S_1 becomes illegible for all practical purposes. Vibration Amplitude x Image Brightness x Image Resolution (A x B x R). Figures 6(d), 6(e), and 6(f) show this interaction. Viewing the three figures from left to right (increasing resolution), it can be seen that overall there is a general improvement in reading performance, somewhat more so for the A_2 (1/4-inch vibration) condition. At R_3 (Figure 6(f)), the A_0 and A_1 curves are clearly separated showing a small but consistent decrement due to 1/8-inch vibration (A_1). Performance under the 1/4-inch vibration condition (A_2) still falls well below the other two. This difference is most pronounced for the lowest image brightness (4 ft-L). Vibration Amplitude x Image Brightness x Vibration Frequency (A x B x F). This interaction is shown in Figure 7(a). No A0 curve is shown since the zero frequency condition represents the no-vibration control condition. (A0 data and F_0 data are the same scores.) It may be seen that the six curves fall into two separate groups across 15 and 30 Hz. This grouping is due to the difference in vibration amplitude $(A_1 = 1/8\text{-inch vs. }A_2 = 1/4\text{-inch})$. Within each group, the curves are ordered clearly with respect to image brightness, higher brightness being associated with better performance. In the A_1 group, the curves tend to diverge with a greater rate of degradation suggested for the low image brightness curve (A_1, B_1) . In A_2 group, there is only the smallest suggestion of a decline for B_3 and B_1 across 15 and 30 Hz. B_2 exhibits an apparent reversal, however, these scores (less than 100) represent generally poor performance due to poor display legibility and data variability is greater in this performance range. 是只是是一个人,只是这个人,他们是一个人,他们是一个人,他们也不是一个人,他们也不是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也不是一个人,他们 Reading performance as a function of three-parameter interactions: (a) vibration amplitude x image brightness x vibration frequency, (b) vibration amplitude x vibration frequency x image size, (c) vibration amplitude x vibration frequency x image resolution, (d, e, f) vibration frequency x image resolution, x image size. Figure 7. Looking carefully at the zero frequency (no-vibration) condition at the left, it may be seen that the data points are ordered generally in direct relation to image brightness. Vibration Amplitude x Vibration Frequency x Image Size $\{A \times F \times S\}$. This interaction is presented in Figure 7(b). The differential effects of amplitude and image size have been shown in Figure 5(c). Here it is of interest to see whether the A \times S effect differs for different levels of vibration frequency. Two points are worth noting. One is the degradation of performance for the A_1S_1 curve in going from 15 Hz to 30 Hz, suggesting that small images are more sensitive to vibration frequency than larger ones. Second is the form of the A_2S_1 curve. The effect of frequency here is only slight but at 15 Hz, the A_2S_1 curve has little room for further decline. Vibration Amplitude x Vibration Frequency x Image Resolution (A x F x R). As seen in Figure 7(c), the A_2 (1/4-inch amplitude) curves tend to diverge as vibration frequency increases from 0 to 15 to 30 Hz. The A_2R_1 curve, representing the lowest resolution used, shows a slight decline from 15 to 30 Hz. Overall, it appears that the differential effects of frequency, while statistically significant, are not pronounced in influencing the A x R effect. Vibration Frequency x Image Resolution x Image Size (F x R x S). This interaction is shown in Figures 7(d), 7(e), and 7(f). In 7(d), representing the lowest resolution level, the curves for image size are clearly separated. While S_2 and S_3 show an initial drop in going from zero frequency (novibration) to 15 Hz, they appear to level off with no further decline at 30 Hz. However, S_1 continues to decline indicating the vulnerability of a small, low resolution image to vibration frequency. As resolution increased, Figures 7(e) and 7(f), performance generally increased. At R_2 , the difference between S_2 and S_3 is greatly reduced but S_1 still lags behind. At R_3 (Figure 7(f)), S_1 is associated with the best performance of the three sizes at zero vibration but declines as vibration frequency increases. At 30 Hz, S_1 is again poorest. Even at high resolution, the smallest image is vulnerable to vibration frequency. The remaining statistically significant higher order interactions were plotted and inspected visually. However, the effects involved did not seem of practical consequence, and therefore, are not presented. ## Experiment No. 2 The primary purpose of this experiment was to assess the effect of red vs. white images (background for positive transparencies) on display legibility. ## Method All the apparatus, procedures, test conditions, and dependent measures were as described in Experiment No. 1 with the following exceptions. - (1) Ambient illumination was not varied; it remained at zero throughout the experiment. - (2) The factor of image/surround color was introduced. On one half of the trials, a red filter was used to produce red letters on a dark surround for negative transparencies and dark letters against a red surround for positive transparencies. - (3) Image brightness levels were 8, 28, and 48 ft-L. - (4) Twenty-four subjects not used in Experiment No 1 participated in this experiment. All remaining variables were as in Experiment No. 1. Values for the parameters are presented in Exhibit 1(a) (page 70) which can be folded out for easy reference. ^{*}Kodak No. 24 Red. ## Statistical Design A mixed analysis of variance design was used as described in Experiment No. 1. The design matrix is shown in Figure 8. ## Results In general, the results were in good agreement with those of Experiment No. 1, where corresponding conditions were tested. As in the first experiment, image polarity showed no effect either in graphic or statistical analysis of the data, and therefore, was excluded from further consideration. The comparison of red vs. white displays also failed to reach significance and visual inspection of the data showed no effect due to use of the red filter. Image brightness, tested over the range of 8 to 48 ft-L, was also non-significant. It will be remembered that ambient light was not varied here and the range of image brightness tested was apparently not great enough to have a pronounced effect. Certain other variables were not significant here although they were found to be so in Experiment No. 1. This might be expected in that less subjects were used in the second experiment, and therefore, small but real effects would be less likely to be detected. Results of the analyses of variance are presented in Tables 5, 6, and 7, corresponding respectively to the three dependent measures: (1) reading rate, (2) accuracy, and (3) the combined score (P) as defined earlier in Equation 1. | | | | (· | |----------|----------------|--|--| | | R ₃ | 1 52 53 | er value | | | ~ | 35 | ne te | | F2 | R2 | S ₁ S ₂ S | or paran | | | R ₁ | S1 S2 S3 | A = Vibration Amplitude B = Image Brightness C = Image Color F = Vibration Frequency P = Image Resolution S = Image Size S = Subjects S = Subjects (Refer to Exhibit 1(a), page 70, for parameter values.) | | | R ₃ | 1 52 53 | Vibration Amplitude Image Brightness Image Color Vibration Frequency Image Resolution Image Size Subjects Fer to Exhibit 1(a), pa | | | | 3 5 | Amp
intro
lutt
bit | | <u>"</u> | R ₂ | 52 | fon
Brig
Colo
Colo
Fola
Size
Cxhi | | | | Sı | orat
ige
orat
ige
ige
fc
fc | | | | 53 | Vib
Ima
Ima
Ima
Ima
Sub
Sub | | | R ₁ | 52 | RP SS S | | | | 3.51 | | | | R ₃ | 52 5 | | | | | 3 | | | Fo | R2 | 52 5 | | | | | 3 51 | | | | R ₁ | 2 5. | | | | Œ | S ₁ S ₂ S ₃ | 2 | | | l | | A A A A A A A A A A A A A A A A A A A | | | | | 5 5 5 5 5 | | | | | 8 ₃ | | | | | * c" | | | | | L | * (Design is replicated for P $_2$) Figure 8. Hixed analysis of variance design. (Experiment No. 2) TABLE 5 Analysis of Variance on Reading Rate | Source | df | MS | ror
Term | <u> </u> | |-------------------------------|-----|-----------|-------------|----------| | Between Subjects | 23 | | | | | Image Color (C) | 1 | 1932.35 | (1) | | | Image Brightness (B) | 2 | 7676.22 | (1) | 2.24 | |
Vibration Amplitude (A) | 1 | 519010.68 | (1) | 151.25** | | B x C | 2 | 12438.35 | (1) | 3.62 | | A x C | 1 | 15070.41 | (1) | 4.39 | | AxB | 2 | 6414.30 | (1) | 1.87 | | AxBxC | 2 | 13176.86 | (1) | 3.84 | | (1) Ss/A x B x C (Error Term) | 12 | 3431.37 | | | | Within Subjects | 624 | | | | | Vibration Frequency (F) | 2 | 178852.10 | (2) | 112.20** | | Image Size (S) | 2 | 77893.50 | (3) | 90.72** | | Image Resolution (R) | 2 | 80867.14 | (4) | 98.74** | | FxS | 4 | 2785.05 | (5) | 1.47 | | FxR | 4 | 3218.98 | (6) | 3.51* | | R x S | 4 | 29073.88 | (7) | 110.25** | | CxF | 2 | 5066.48 | (2) | 3.18 | | ВхF | 4 | 2738.81 | (2) | 1.72 | | AxF | 2 | 189154.18 | (2) | 118.66** | | C x 3 | 2 | 308.51 | (3) | | | B x S | 4 | 3415.29 | (3) | 3.98* | | AxS | 2 | 4805.48 | (3) | 5.60* | | CxR | 2 | 1105.64 | (4) | 1.35 | | B x R | 4 | 487.69 | (4) | | | Α×R | 2 | 5413.50 | (4) | 6.61** | | CxFxS | 4 | 379.87 | (5) | | TABLE 5 (cont.) Anaîysis of Variance on Reading Rate | Source | _df_ | MS | Error
Term | <u> </u> | |-------------------------|------|------------------|---------------|----------| | Within Subjects (cont.) | | | | | | BxFxS | 8 | 1610.49 | (5) | | | AxfxS | 4 | 1 9 08.27 | (5) | 1.01 | | $C \times F \times R$ | 4 | 676.52 | (6) | ••• | | BxFxR | 8 | 1117.01 | (6) | 1.22 | | AxfxR | 4 | 1008.05 | (6) | 1.10 | | CxRxS | 4 | 545.55 | (7) | 2.07 | | BxRxS | 8 | 217.26 | (7) | *** | | AxRxS | 4 | 6467.15 | (7) | 24.52** | | FxRxS | 8 | 3178.02 | (8) | 4.21** | | BxCxF | 4 | 540.81 | (2) | ~- | | AxCxF | 2 | 1822.07 | (2) | 1.14 | | Ax3xF | 4 | 3163.94 | (2) | 1.98 | | BxCxS | 4 | 778.54 | (3) | | | AxCxS | 2 | 1319.40 | (3) | 1.54 | | AxBxS | 4 | 797.39 | (3) | | | BxCxR | 4 | 487.16 | (4) | | | AxcxR | 2 | 451.27 | (4) | | | $A \times B \times R$ | 4 | 2403.57 | (4) | 2.93* | | BxCxFxS | 8 | 2058.00 | (5) | 1.09 | | AxCxFxS | 4 | 615.84 | (5) | | | AxBxFxS | 8 | 2640.80 | (5) | 1.40 | | BxCxFxR | 8 | 893.79 | (6) | | | AxCxFxR | 4 | 521.88 | (6) | | | Axexfxq | 8 | 449.21 | (6) | | | BxCxRxS | 8 | 271.36 | (7) | 1.03 | TABLE 5 (cont.) Analysis of Variance on Reading Rate | | | MS | Term | <u>F</u> | |------------------------------|----|---------|------|----------| | Within Subjects (cont.) | | | | | | AxcxRxS | 4 | 236.29 | (7) | | | AxbxRxS | 8 | 497.23 | (7) | 1.88 | | CxFxRxS | 8 | 426.45 | (8) | | | BxfxRxS | 16 | 586.33 | (8) | | | AxfxRxS | 8 | 3919.72 | (8) | 5.19** | | AxBxCxF | 4 | 686.82 | (2) | ~- | | AxBxCxS | 4 | 3006.23 | (3) | 3.50* | | AxBxCxR | 4 | 402 13 | (4) | | | AxBxCxFxS | 8 | 1856. 2 | (5) | | | AxBxCxFxR | 8 | 1355.12 | (6) | 1.48 | | AxBxCxRxS | 8 | 452.30 | (7) | 1.72 | | BxCxFxRxS | 16 | 978.70 | (8) | 1.30 | | AxCxFxRxS | 8 | 682.92 | (8) | | | AxBxFxRxS | 16 | 321.27 | (8) | | | AxBxCxFxRxS | 16 | 767.83 | (8) | 1.02 | | Error Terms | | | | | | (2) Ss x F/A x B x C | 24 | 1594.07 | | | | (3) Ss x S/A x B x C | 24 | 858.61 | | | | (4) Ss x R/A x B x C | 24 | 819.01 | | | | (5) Ss x F x S/A x B x C | 48 | 1892.42 | | | | (6) Ss x F x R/A x B x C | 48 | 917.87 | | | | (7) Ss x R x S/A x B x C | 48 | 263.70 | | | | (8) Ss x F x R x S/4 x B x C | 96 | 755.16 | | | ^{**}p<.01 TABLE 6 Analysis of Variance on Error Rate (Percent Correct) | Source | df | | Error
Term | F | |-------------------------------|-----|---------|---------------|------------| | Between Subjects | 23 | | | | | Image Color (C) | 1 | .3147 | (1) | 1.88 | | Image Brightness (B) | 2 | .0045 | (1) | | | Vibration Amplitude (A) | 1 | 16.2450 | (1) | 97.16** | | B x C | 2 | .0296 | (i) | ~- | | AxC | 1 | .2178 | (1) | 1.30 | | AxB | 2 | .0001 | (1) | | | AxBxC | 2 | .0759 | (1) | | | (1) Ss/A x B x C (Error Term) | 12 | .1672 | | | | Within Subjects | 624 | | | | | Vibration Frequency (F) | 2 | 4.4050 | (2) | 58.34** | | Image Size (S) | 2 | 2.7154 | (3) | 151.70** | | Image Resolution (R) | 2 | 1.6594 | (4) | 207.42** | | FxS | 4 | .5902 | (5) | 37.59** | | FxR | 4 | .4121 | (6) | 57.24** | | R x S | 4 | .1071 | (7) | 7.54** | | CxF | 2 | .0776 | (2) | 1.03 | | B x F | 4 | .0176 | (2) | w ~ | | AxF | 2 | 4.3189 | (2) | 57.20** | | C x S | 2 | .0222 | (3) | 1.24 | | B x S | 4 | .0433 | (3) | 2,42 | | AxS | 2 | 1.8712 | (3) | 104.54** | | CxR | 2 | .0061 | (4) | | | В×R | 4 | .0038 | (4) | | | AxR | 2 | 1.1347 | (4) | 141.84** | | CxFxS | 4 | .0112 | (5) | | TABLE 6 (cont.) Analysis of Variance on Error Rate (Percent Correct) | Source | _df_ | MS | Error
Term | <u> </u> | |-------------------------|------|-------|---------------|----------| | | | | | | | Within Subjects (cont.) | | | | | | BxFxS | 8 | .0274 | (5) | 1.74 | | ÁxFxS | 4 | .4951 | (5) | 31.54** | | CxFxR | 4 | .0083 | (6) | 1.15 | | BxFxR | 8 | .0024 | (6) | ** | | A × F × R | 4 | .2873 | (6) | 39.90** | | CxRxS | 4 | .0416 | (7) | 2.93* | | BxRxS | 8 | .0040 | (7) | ~- | | AxRxS | 4 | .2050 | (7) | 14.44** | | FxRxS | 8 | .0371 | (8) | 4.70** | | BxCxF | 4 | .0134 | (2) | | | AxCxF | 2 | .0911 | (2) | 1.21 | | AxBxF | 4 | .0043 | (2) | | | BxCxS | 4 | .0259 | (3) | 1.45 | | AxCxS | 2 | .0144 | (3) | | | AxBxS | 4 | .0175 | (3) | | | BxCxR | 4 | .0114 | (4) | 1.42 | | AxCxR | 2 | .0058 | (4) | | | AxBxR | 4 | .0027 | (4) | wa 7% | | BxCxFxS | 8 | .0082 | (5) | | | AxCxFxS | 4 | .0062 | (5) | | | AxBxFxS | 8 | .0234 | (5) | 1.49 | | BxCxFxR | 8 | .0093 | (6) | 1.29 | | AxCxFxR | 4 | .0025 | (6) | | | AxBxFxR | 8 | .0043 | (6) | | | UKCKRKS | 8 | .0118 | (7) | ·2= | | AxCxRxS | 4 | .0673 | (7) | 4.74** | TABLE 6 (cont.) Analysis of Variance on Error Rate (Percent Correct) | Source | df | MS | Error
Term | F | |------------------------------|----|-------|---------------|--------| | Within Subjects (cont.) | | | | | | AxBxRxS | 8 | .0148 | (7) | 1.04 | | CxFxRxS | 8 | .0137 | (8) | 1.73 | | BxFxRxS | 16 | .0037 | (8) | | | AxfxRxS | 8 | .0670 | (8) | 8.48** | | AxBxCxF | 4 | .0325 | (2) | | | AxBxCxS | 4 | .0174 | (3) | | | AxBxCxR | 4 | .0087 | (4) | 1.09 | | AxBxCxFxS | 8 | .0080 | (5) | | | AxBxCxFxR | 8 | .0190 | (6) | 2.64* | | AxBxCxRxS | 8 | .0067 | (7) | | | BxCxFxRxS | 16 | .0126 | (8) | 1.59 | | AxCxFxRxS | 8 | .0176 | (8) | 2.23 | | AxBxFxRxS | 16 | .0055 | (8) | | | AxBxCxFxRxS | 16 | .0057 | (8) | ~~ | | Error Terms | | | | | | (2) Ss x F/A x B x C | 24 | .0755 | | | | (3) Ss x S/A x B x C | 24 | .0179 | | | | (4) Ss x R/A x B x C | 24 | .0080 | | | | (5) Ss x F x S/A x B x C | 48 | .0157 | | | | (6) Ss x F x R/A x B x C | 48 | .0072 | | | | (7) Ss x R x S/A x B x L | 48 | .0142 | | | | (8) Ss x F x R x S/A x B x C | 96 | .0079 | | | ^{*} p<.05 ^{**}p<.01 TABLE 7 Analysis of Variance on the Combined Score (P) | Source | df | MS | Error
Term | F | |------------------------------|-------|-----------|---------------|-----------| | Between Subjects | 23 | | | | | Image Color (C) | 1 | 19.26 | (1) | | | Image Brightness (E) | 2 | 10876.37 | (1) | ** | | Vibration Amplitude (A) | 1 | 622773.26 | (1) | 32.98** | | B x C | 2 | 15690.81 | (1) | ~~ | | AxC | 1 | 6941.37 | (1) | | | AxB | 2 | 6652.78 | (1) | | | AxBxC | 2 | 15643.14 | (1) | | | (1) Ss/A x B x C (Error Term | 1) 12 | 18883.94 | | | | Within Subjects | 624 | | | | | Vibration Frequency (F) | 2 | 230513.03 | (2) | 146.73** | | Image Size (S) | 2 | 84444.56 | (3) | 80.73** | | Image Resolution (R) | 2 | 113261.20 | (4) | 46.50** | | FxS | 4 | 3588.32 | (5) | 1.78 | | FxR | 4 | 4768.5€ | (6) | 6.27** | | R x S | 4 | 19563.21 | (7) | 36.35** | | СхF | 2 | 5653.79 | (2) | 3.60* | | BxF | 4 | 1953.10 | (2) | 1.24 | | AxF | 2 | 240229.93 | (2) | 152.92** | | CxS | 2 | 732.66 | (3) | | | В . | 4 | 1297.84 | (3) | 1.24 | | AxS | 2 | 9983.79 | (3) | 9.54** | | CxR | 2 | 3048.89 | (4) | 1.25 | | BxR | 4 | 3663.76 | (4) | 1.50 | | AxR | 2 | 1682.17 | (4) | | | CxFxS | 4 | 222.44 | (5) | *** | TABLE 7 (cont.) Analysis of Variance on the Combined Score (P) | A x F x S 4 3285.01 (5) 1 C x F x R 4 628.34 (6) 1 B x F x R 8 960.38 (6) 1 A x F x R 4 1119.21 (6) 1 C x R x S 4 106.23 (7) 16 B x R x S 8 522.03 (7) 16 A x R x S 4 10028.67 (7) 16 F x R x S 8 5103.86 (7) 16 B x C x F 4 867.80 (2) A x B x F 4 1834.16 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x R 4 6816.16 (4) 2 A x B x R 4 6816.16 (4) 2 A x B x F x S 8 2148.42 (5) 1 A x B x F x S | F | |--|-------| | B x F x S 8 2091.61 (5) 1 A x F x S 4 3285.01 (5) 1 C x F x R 4 628.34 (6) 1 B x F x R 8 960.38 (6) 1 A x F x R 4 1119.21 (6) 1 C x R x S 4 106.23 (7) 18 B x R x S 8 522.03 (7) 18 F x R x S 8 5103.86 (′) 18 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x R 4 6816.16 (4) 2 A x B x R 4 6816.16 (4) 2 A x C x F x S 4 691.11 (5) A x B x F x S <t< th=""><th></th></t<> | | | A x F x S 4 3285.01 (5) 1 C x F
x R 4 628.34 (6) 1 B x F x R 8 960.38 (6) 1 A x F x R 4 1119.21 (6) 1 C x R x S 4 106.23 (7) 16 B x R x S 8 522.03 (7) 18 F x R x S 8 5103.86 (7) 18 F x R x S 8 5103.86 (7) 18 B x C x F 4 867.80 (2) 1 A x B x F 4 1834.16 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x R 4 6816.16 (4) 2 A x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 1 A x B x | | | C x F x R 4 628.34 (6) B x F x R 8 960.38 (6) A x F x R 4 1119.21 (6) C x R x S 4 106.23 (7) B x R x S 8 522.03 (7) A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 10 A x C x F 2 2133.02 (2) 11 A x B x F 4 1834.16 (2) 12 A x B x F 4 1834.16 (2) 13 A x C x S 4 378.82 (3) 13 A x B x S 4 399.55 (3) 13 A x B x R 4 2933.25 (4) 13 A x C x R 2 3405.24 (4) 14 A x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 14 A x B x F x S 8 2862.7 | .04 | | B x F x R 8 960.38 (6) 1 A x F x R 4 1119.21 (6) 1 C x R x S 4 106.23 (7) 18 B x R x S 8 522.03 (7) 18 A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x R 4 6816.16 (4) 2 A x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 1 A x C x F x S 4 691.11 (5) 1 A x B x F x S | .63 | | A x F x R 4 1119.21 (6) 1 C x R x S 4 106.23 (7) B x R x S 8 522.03 (7) A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x R 4 6816.16 (4) 2 A x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 1 A x B x F x S 8 2862.77 (5) 1 | | | C x R x S 4 106.23 (7) B x R x S 8 522.03 (7) A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x B x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 1 A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) 1 | .26 | | B x R x S 8 522.03 (7) A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (7) 8 B x C x F 4 867.80 (2) 1 A x B x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 3 A x C x R 2 3405.24 (4) 3 A x B x B x R 4 6816.16 (4) 3 A x C x F x S 8 2148.42 (5) 3 A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) 1 | .47 | | A x R x S 4 10028.67 (7) 18 F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x C x R 2 3405.24 (4) 1 A x B x R 4 6816.16 (4) 2 A x C x F x S 8 2148.42 (5) 1 A x B x F x S 8 2862.77 (5) 1 | | | F x R x S 8 5103.86 (*) 8 B x C x F 4 867.80 (2) 1 A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x C x R 2 3405.24 (4) 1 A x B x R 4 6816.16 (4) 2 B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | | | B x C x F 4 867.80 (2) A x C x F 2 2133.02 (2) A x B x F 4 1834.16 (2) B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) A x C x R 2 3405.24 (4) A x B x R 4 6816.16 (4) B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .63** | | A x C x F 2 2133.02 (2) 1 A x B x F 4 1834.16 (2) 1 B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x C x R 2 3405.24 (4) 1 A x B x R 4 6816.16 (4) 2 B x C x F x S 8 2148.42 (5) 1 A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .49** | | A x B x F 4 1834.16 (2) 1834.16 (2) 1834.16 (2) 1834.16 (2) 1834.16 (2) 1834.16 (2) 1834.16 (2) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (3) 1834.16 (4) 1834.16 (3) 1834.16 (4) 1834.16 (5) 1834.16 (5) 1834.16 (5) <td< td=""><td></td></td<> | | | B x C x S 4 378.82 (3) A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) A x C x R 2 3405.24 (4) A x B x R 4 6816.16 (4) B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .36 | | A x C x S 2 993.19 (3) A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) A x C x R 2 3405.24 (4) A x B x R 4 6816.16 (4) B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .17 | | A x B x S 4 399.55 (3) B x C x R 4 2933.25 (4) 1 A x C x R 2 3405.24 (4) 1 A x B x R 4 6816.16 (4) 2 B x C x F x S 8 2148.42 (5) 1 A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | | | B x C x R 4 2933.25 (4) A x C x R 2 3405.24 (4) A x B x R 4 6816.16 (4) B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | | | A x C x R 2 3405.24 (4) A x B x R 4 6816.16 (4) B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | ~- | | A x B x R 4 6816.16 (4) 2 B x C x F x S 8 2148.42 (5) 3 A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .20 | | B x C x F x S 8 2148.42 (5) A x C x F x S 4 691.11 (5) A x B x F x S 8 2862.77 (5) | .40 | | A x C x F x S 4 691.11 (5)
A x B x F x S 8 2862.77 (5) | *08. | | A x B x F x S 8 2862.77 (5) | .06 | | | | | | .42 | | 8 926.04 (6) | ,22 | | A x C x F x R 4 421.96 (6) | | | A x B x F x R 8 313.35 (6) | | | B x C x R x S 8 271.63 (7) | | | A x C x R x S 4 599.52 (7) | .11 | TABLE 7 (cont.) Analysis of Variance on the Combined Score (P) | Source | df | MS | Error
Term | F | |------------------------------|----|---------|---------------|---------| | Within Subjects (cont.) | | | | | | AxBxRxS | 8 | 450.76 | (7) | | | CxFxRxS | 8 | 322.68 | (8) | | | BxFxRxS | 16 | 458.14 | (8) | | | AxfxkxS | 8 | 6096.88 | (8) | 10.14** | | AxBxCxF | 4 | 649.68 | (2) | | | AxBxCxS | 4 | 1950.55 | (3) | 1.86 | | AxBxCxR | 4 | 2442.86 | (4) | 1.00 | | AxBxCxfxS | 8 | 1705.57 | (5) | | | AxBxCxFxR | 8 | 943.50 | (6) | 1.24 | | AxBxCxRxS | 8 | 771.85 | (7) | 1.43 | | BxCxFxRxS | 16 | 922.95 | (8) | 1.53 | | AxCxFxRxS | 8 | 712.75 | (8) | 1.18 | | AxBxFxRxS | 16 | 455.38 | (8) | -i- | | AxBxCxFxRxS | 16 | 473.32 | (8) | | | Error Terms | | | | | | (2) Ss x F/A x B x C | 24 | 1570.95 | | | | (3) Ss x S/A x B x C | 24 | 1046.07 | | | | (4) Ss x R/A x B x C | 24 | 2435.56 | | | | (5) Ss x F x S/A x B x C | 48 | 2017.20 | | | | (6) Ss x F x R/A x B x C | 48 | 769.24 | | | | (7) Ss x R x S/A x B x C | 48 | 538.18 | | | | (8) Ss x F x R x S/A x B x C | 96 | 601.38 | | | | * n< .05 | | | | | ^{*} p<.05 ^{**}p<.01 Since the combined score gives the more complete picture of the relationsnip between performance and display conditions for reasons given earlier, those results are presented below. Image Size (S). Figure 9(a) shows reading performance as a function of image size. S_1 , the smallest of the three sizes used, was associated with poorer performance than S_2 or S_3 . Image Resolution (R). As seen in Figure 9(b), performance tended to improve with increased resolution. The rate of improvement 1s somewhat greater from 10 to 20 cycles/mm than from 20 to 60 cycles/mm. <u>Vibration Frequency (F)</u>. Reading performance is shown as a function of vibration frequency in Figure 9(c). The overall significant F-ratio was due to the difference between no-vibration (0 Hz) and vibration (15, 30 Hz). The two vibration frequencies, 15 Hz vs. 30 h_- , were tested omitting the no-vibration data and found no to be significantly different. <u>Vibration Amplitude (A)</u>. The effect of vibration amplitude on reading performance is shown in Figure 9(d). It can be seen that i/8-inch amplitude produced only a slight drop in performance while 1/4-inch resulted in a dramatic 67 percent loss. Image Resolution x Image Size $(k \times S)$. Figure 9(e) shows reading performance as a function of image resolution with image size as the parameter. These curves are in very close agreement with those of Experiment No. 1 (Figure 4(a)) which used completely different subjects. At the highest resolution level used (60 cycles/mm), performance is directly related to image size with the Reading performance as a function of display parameters: (a) image size, (b) image resolution, (c) vibration frequency, (d) vibration amplitude, (e) image resolution with image size as the parameter, (f) vibration frequency with image size as the parameter. Figure 9. largest image best and the smallest image size poorest. At the lowest resolution used, S_2 is best followed by S_3 , then S_1 . S_1 is poorest across all resolution levels used. <u>Vibration Frequency x Image Resolution (F x R)</u>. As shown in Figure 9(f), reading performance was better for higher levels of resolution. The resolution curves tend to diverge, however, as vibration frequency is increased. While R_3 and R_2 show an initial drop between 0 and 15 Hz, they exhibit no further loss at 30 Hz. A small loss occurs for the lower resolution (R_1) in going from 15 to 30 Hz. Image Color x Vibration Frequency (C x F). Figure 10(a) shows reading performance as a function of vibration frequency with image color as the parameter. Image color by itself was not statistically significant (mean performance for white = 114.5; mean performance for red = 114.1), nor was the simple effect of 15 Hz vs. 30 Hz. It is felt that the interaction of these two factors, while statistically significant, is not of sufficient magnitude to be of practical importance. <u>Vibration Amplitude x Vibration
Frequency (A x F)</u>. The effect of vibration amplitude and vibration frequency on performance is shown in Figure 10(b). Only the effect of amplitude is apparent. The interaction is deemed of no practical consequence. Vibration Amplitude x Image Size (A x S). As can be seen in Figure 10(c), 1/4-inch amplitude (A₂) had a more pronounced effect on the smaller image size (S₁), rendering it illegible, while S₂ and S₃ performance levels were reduced by about 60 percent. Reading performance as a function of parameter interactions: (a) image color x vibration frequency, (b) vibration amplitude x vibration frequency, (c) vibration amplitude x image size, (d, e, f) vibration frequency x image resolution x image size. Figure 10. In a case of a record of a large of the case ca Vibration Frequency x Image Resolution x Image Size (F x R x S). This interaction is shown in Figures 19(d), 10(e), and 10(f), corresponding to low, medium, and high resolution levels, respectively. At low resolution (Figure 10(d)), performance curves for the respective image sizes are clearly separated with S_2 best, S_3 next, and S_1 poorest. This holds across all vibration frequencies for the low resolution (R_1) conditions. There also is a decline in performance as vibration frequency increases, most of the loss coming in the change from no-vibration to 15 Hz. As resolution is increased, there is a general increase in performance levels. The difference between S_2 and S_3 is negligible at R_2 . The smallest size image (S_1) retains its relatively inferior position at the higher resolution levels. Under conditions of vibration a^+ the highest resolution level (R₃), S₃ (large) is best followed by S₂ and then S₁. At 0 Hz, S₁ is best. Vibration Amplitude x Image Resolution x Image Size $(A \times R \times S)$. This interaction is shown in Figures 11(a), 11(b), and 11(c), corresponding respectively to the three levels of image resolution tested. Looking across the three figures from left to right, it can be seen that there was an overall improvement in reading performance as resolution was increased but the rate and amount of improvement depended upon the image size and the attendent vibration amplitude. For all practical purposes, S_1 (small size) remains illegible under 1/4-inch vibration at all levels of resolution. S_2 shows some improvement, and S_3 (large size) shows marked improvement with increased resolution. At low resolution (R₁), performance associated with the no-vibration (A₀) condition is best and is consistently about 10 percent higher than the 1/8-inch vibration condition (A₁). At low resolution, S₂ appears to be more legible than S₁ or S₃. Reading performance as a function of parameter interactions: (a, b, c) vibration amplitude x image resolution x image size, (d, e, f) vibration amplitude x image brightness x image resolution. Figure II. The structure of the second and a structure of the overall finance o As resolution is increased, the discrepancy between the A_0 and A_1 curves tends to disappear as does the differential effect of image size. It can be concluded that high resolution targets are less vulnerable to degradation by vibration and, conversely, the lower the resolution and smaller the image size, the greater the decrement for a given amount of vibration. Vibration Amplitude x Image Brightness x Image Resolution (A x B x R). Figures 11(d), 11(e), and 11(f) show the A x B x R interaction. From left to right, the figures represent increasing levels of resolution. Most noticeable is the increase in performance levels depicted by the A_2 curve (1/4-inch vibration) as resolution is increased. At R_2 and R_3 , there is essentially no difference between the A_0 and A_1 curves while at low resolution (R_1), the no-vibration condition (A_0) is associated with consistently better performance than A_1 (1/8-inch vibration). In all cases, the A_2 (1/4-inch vibration) curve is associated with relatively poor reading performance although there is a consistent improvement with increased resolution. The effect of image brightness is not pronounced. What effect there is, is most apparent in the $\rm A_0$ and $\rm A_1$ curves of Figure 11(d) between 8 and 28 ft-L. ### DISCUSSION The foregoing test results show the manner in which the various display parameters affected display legibility, i.e., reading speed and accuracy. It was found that for the range of conditions tested, image polarity and image color (red vs. white) had no significant effect on reading performance while image resolution, brightness, and size proved to be important determinants of legibility. Vibration of the projected image reduced legibility in proportion to the oscillation amplitude, and to a lesser degree, in relation to vibration frequency. The individual variables affected legibility in an expected manner. More importantly, the form and magnitude of their interactions has now been determined in quantitative form. Although the curves presented show the effect of the combined parameters on legibility, the data may be presented in somewhat different form to facilitate assessment of the relative effects of each parameter. In particular, it appeared useful to express the scores relative to that performance obtained by reading hand-held, typewritten copy under good lighting conditions. It will be recalled that the necessary reference data was obtained in determining the difficulty weight for each paragraph. Twenty subjects who did not participate in the experiments proper read each of the 27 paragraphs out loud from typed copy. The overall average reading rate (errors were negligible) was 200 words per minute. The test scores were normalized with respect to 200 words per minute, e.g., a performance score of 200 was converted to 1.00, a score of 125 became 0.62, etc. The normalized scores are presented in Tables 3 through 11. In Table 8, the data have been averaged across image size while Tables 9, 10, and 11, respectively, represent the three different image sizes. Data in each table are classified according to the test conditions of ambient light, image brightness, resolution, and vibration amplitude. The normalized scores in the tables may be viewed as legibility factors relative to reading hand held copy at a nominal distance of 14 inches. From these tables, it is possible to obtain a clearer picture of the relative TABLE 8 Normalized Performance Scores Relative to Reading Typed Copy (200 words per minute) Averaged Across Three Image Sizes | | | | | | Amt | oient I | l lumina | Ambient Illumination (I) (ft-c) | (ft-0 | 7 | | | | |---------------------|--------------------------|--|--|-------|------------|--------------------|----------|----------------------------------|--------------------|--------------------|--------------------|---------------------|-------| | | | | 11= 0 | | I | I ₂ =25 | | H. | I ₃ =50 | | Ħ | I ₄ =100 | | | Vibratio | Image | to di dispinanti di samanin pri daggio di spinanti di samanin di samanin di samanin di samanin di samanin di s | Article de la Company Co | | Image | e Kesol | ution (| Image Kesolution (R) (cycles/mm) | les/mm) | | | | | | Amp I 1 tude
(A) | brigntress (b)
(ft-L) | R ₁ =10 | R2=20 | R3=60 | $R_1 = 10$ | R ₂ =20 | R3=60 | $R_1 = 10$ | R2=20 | R ₃ =60 | R ₁ =10 | R ₂ =20 | R3=60 | | | R, = 4 | .82 | .86 | .93 | .64 | 07. | .82 | .26 | .50 | .70 | .46 | .62 | .73 | | A ₀ = 0" | B ₂ = 28 | .70 | .74 | 93. | 69. | .78 | .86 | .71 | .72 | 92. | .67 | .72 | .80 | | > | 8 ₃ = 80 | 99. | 69. | .80 | .79 | .81 | .95 | .81 | .74 | 96. | .74 | .78 | .91 | | | 3, " | .75 | .83 | 95 | .59 | .67 | .71 | .31 | .48 | . 58 | .39 | . 53 | .65 | | A, =1/8" | L B = 28 | 89. | .72 | .85 | .75 | . 73 | .81 | 99. | 99. | .74 | .67 | .75 | .86 | | ٠, | B ₃ = 80 | .70
 .78 | .82 | .93 | .93 | 1.00 | 06. | .88 | .94 | .64 | .70 | .75 | | | B ₁ = 4 | .08 | .32 | .57 | .02 | .14 | .26 | 00. | 00. | .02 | .05 | .14 | .30 | | A2 =1/4" | 8, = 28 | .16 | .39 | .54 | . 12 | .34 | .46 | .14 | .32 | .43 | 90° | .14 | .27 | | ı | 83 - 80 | .17 | .34 | .43 | .18 | .43 | .52 | .16 | .34 | .47 | .19 | .49 | 99. | | | | | | | | | | | | | | | | mander virtelle halter hander TABLE 9 (200 words per minute) for 0.67% Projection of 12 Point, 12 Pitch Type Normalized Performance Scores Relative to Reading Typed Copy | | | | | value o de la calenda ca | | Ambient | Ambient illumination (I) | nation | ł | (ft-c) | | | | |-----------------------|---------------------------|--------------------|--------------------|--|--------------------|--------------------|--------------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|-------| | ; | | H | I ₁ = 0 | | , T | I ₂ =25 | | , | i ₃ =50 | | | I ₄ =100 | | | Vibration | Image | | | | Ima | ige Resc | Image Resolution | (R) | (cycles/mm) | (ww | | | | | Amio I I turse
(A) | (1-1) (Le-L) | R ₁ =10 | R ₂ =20 | R3=60 | R ₁ =10 | R ₂ =20 | R ₃ =60 | $ R_1 = 10 R_2 = 20$ | R ₂ =20 | R ₃ ≕60 | R ₁ =10 | R ₂ =20 | R₃=60 | | | 8, = 4 | .62 | .82 | 1.00 | .48 | .74 | .94 | .08 | .34 | .78 | 18. | 99. | .73 | | A, = 0" | B, = 28 | .47 | .73 | .91 | .50 | .88 | 83. | .54 | 99. | .79 | . 50 | .72 | .85 | | > | B, = 80 | .48 | .68 | .9 | .55 | 92. | 76. | .68 | .64 | 1.00 | .60 | . 90 | 1.00 | | | E | | 82 | 1 00 | 3 2 | 55 | 74 | 10 | 41 | .57 | .26 | .52 | .70 | | $A_1 = 1/8$ " | 21
B ₂ = 28 | .42 | , 55
5 55 | 96 | 8 | .64 | . 6 | 49 | .62 | .80 | .49 | .74 | 1.00 | | - | B ₃ = 80 | .32 | .64 | .80 | .72 | .91 | 1.00 | .72 | .78 | 1.00 | .42 | .61 | 92. | | |
 | 00 | .63 | | 00. | 00. | .02 | 00. | 96. | 00. | 00. | .0. | .16 | | $\Lambda_2 = 1/4"$ | | .01 | 90. | .22 | 00. | .02 | 60. | .00 | .01 | .13 | 00. | .02 | 90. | | 7 | | 90. | 90. | .14 | .01 | .07 | .12 | 00. | .07 | .20 | 00. | .09 | .43 | | | | | | | | | - | | | | | | | TABLE 10 是是这种的,这种是一种,我们是是是这种,我们是是这种的,我们是是一种,我们是是一种的,我们是是一种的,我们也是一个,我们是一个,我们是一个,我们是一个,我们是是 第一个人,我们是是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们 (200 words per minute) for 1.00% Projection of 12 Point, 12 Pitch Type Normalized Performance Scores Relative to Reading Typed Copy | | | | I ₁ = 0 | | 4 | Ambient Illumination
I ₂ =25 | Illumir | nation (| (I) (ft
I ₃ =50 | (ft-c) | | ľ ₄ =100 | | |-------------------------------|--|------|---------------------------------------|-------------------|---------------------------|--|-------------------------------|------------------------|-------------------------------|---------------------------|--------------------|----------------------|-------| | V1bration
Amplitude
(A) | lmage
Brightness (B
{ft-L} | | R ₁ =10 R ₂ =20 | R3=60 | Ime
R ₁ =10 | Image Resolution | olution
R ₃ =60 | (R) R ₁ =10 | (cycles/mm) $R_2 = 20 R_3$ | nm)
R ₃ =60 | R ₁ =10 | R ₂ =20 | R3=60 | | A ₀ = 0" | B ₁ = 4 B ₂ = 28 B ₃ = 80 | 1.60 | .95
.80
.70 | .92 | 98.
06.
86. | . 67
. 95 | .75
.86
.96 | 88. | . 80
. 80
. 80 | .61
.74
.84 | .86 | .68 | .72 | | $A_1 = 1/8$ " | B ₁ = 4
B ₂ = 28
B ₃ = 80 | .98 | .88
.81 | .85 | .91 | .79
.82 | . 74 | .66
.36
1.00 | ,58
.72 | .90 | .63
.85
.77 | . 54
. 76
. 80 | .63 | | A ₂ = 1/4" | B ₁ :: 4 B ₂ :: 28 B ₃ :: 80 | .18 | .41
.55
.44 | .75
.64
.48 | .07
.31 | .24
.44
.58 | .32 | .00 | .00 | .50 | .12 | .25
.19 | .38 | TABLE 11 Normalized Performance Scores Relative to Reading Typed Copy (200 words per minute) for 1.33% Projection of 12 Point, 12 Pitch Type | | | | deres de la lacas, lacas, de la lacas, de la lacas, de la lacas, de la lacas, de lacas, de la lacas, de lacas, de la lacas, de la lacas, de la lacas, de lacas, de lacas, de la lacas, de la lacas, de la lacas, de la lacas, de | Average regions to the facility of the second secon | Amt | oient [] | lumina | Ambient []]umination ([) | (ft-c) | | | Anna Pennyal Sylvanian di Anna Anna Anna Anna Anna Anna Anna Ann | | |---|--|-------------------------|--
--|--------------------------------------|--|------------------------------|-----------------------------|---|--|-------|--|-------| | | | | 11= 0 | | - | I ₂ =25 | • | - | I ₃ =50 | | | $I_4 = 1.00$ | | | Vibration
Amplitude (A) | Image
Brightness (8)
(ft-L) | 3)
R ₁ =1 | R ₂ =20 | R ₃ =60 | R ₁ =1 | Image Resolution | lution
R ₃ =60 | (R) (
R ₁ =10 | (cycles/mm) R ₂ =20 R ₃ | mm)
R ₃ =60 R ₁ =10 | R,=10 | R ₂ =20 | R3=60 | | | 8, = 4 | .80 | .82 | 98. | .58 | | 62. | 11. | .50 | 07. | .38 | .54 | .74 | | A ₀ = 0" | $B_2 = 28$ | .72 | .71 | 98. | 99. | 99. | 98. | .70 | .68 | .74 | 99. | .72 | 8. | | , | B ₃ = 80 | .76 | .68 | .81 | .84 | .70 | .92 | .76 | .80 | 96. | 69. | .72 | 68. | | | B ₁ = 4 | .75 | .78 | 98. | .56 | 99. | .70 | .18 | . 46 | .50 | .28 | . 54 | .61 | | $A_1 = 1/8"$ | B ₂ = 28 | .70 | .78 | .82 | .76 | .73 | 8. | .64 | .64 | .72 | . 68 | .76 | .79 | | ı | | .84 | .74 | .80 | .92 | .91 | 66. | .94 | .88 | .88 | .72 | .68 | .70 | | | $B_1 = 4$ | .05 | . 52 | .83 | .01 | .17 | .43 | 00, | 00. | .02 | .02 | .30 | .44 | | $A_2 = 1/4$ " | B ₂ = 28 | .12 | 79. | . 74 | .07 | .55 | 69. | .10 | .52 | .65 | .02 | .20 | .37 | | | B ₃ = 80 | .13 | .51 | . 68 | .12 | .64 | .87 | .17 | .58 | .72 | .12 | .74 | .83 | | Men of A be'n section and any is specified to the best in | · of bennut : [1-5-4.8 d.f. paperments | | | | Marriagness and Michigan of Michigan | enderstehenstehen Propertiesen inner i der i | | | | | | | | THE PROPERTY OF O effect of the different parameters and what efficiency (or loss, with respect to reading typed copy) can be expected for a given set of parametric conditions. It can be seen, for example, that performance improved as resolution, image size, and brightness increased. There are some inversions, however. For example, under low ambient illumination, too bright an image (80 ft-L) results in a performance decrement as explained earlier. A similar inversion occurs in Table 8 under 100 ft-c ambient illumination and 1/8-inch vibration amplitude. It would appear that the normalized data provide a helpful basis for determining equivalent legibility conditions and give insight into the tradeoffs which may be made in designing or selecting displays. In this regard, it may be seen that certain parameters are more important than others in affecting legibility. Overall, image resolution appeared to be the most important parameter. Displays with high resolution tended to resist degradation from vibration, reduced image brightness, reduced size, and high ambient illumination. When the display was of low resolution, variation in image size and brightness could not compensate for loss of legibility. Next to resolution, image brightness appeared to be the next most important parameter. The effect of image brightness depends in part on ambient light conditions. Where ambient illumination cannot be controlled, it is important that the display have a good range of brightness levels (e.g., 5 - 80 ft-L), and that adjustment controls be available. Depending upon ambient illumination, a display can be too bright as well as too dim. The legibility of imaged text material also depends on letter size. There are, however, obvious practical constraints in this regard, namely, the size of original copy, photographic reduction ratio, and projector magnification range. The present experiments used 12 point, 12 pitch IBM Letter Gothic (Code 005) type (the same as was used in preparing this report). It was projected at 0.67:1, 1:1, and i.33:1 and all sizes were viewed at 28 inches. Where resolution was good (120 lines/mm) and image brightness was high (80 ft-L), performance did not vary noticeably with letter size. However, the 0.67:1 size was much more vulnerable to degradation through vibration, reduction in brightness, and decreased resolution than the other two sizes. At low resolution, the medium sized image (corresponding to actual typewritten size and viewed at 28 inches) gave the best results. It is possible that factors other than sharpness or contrast of image were contributing to this result. One possible factor is the relationship of line length to scan rate. A large-sized type, and hence a large overall projected image, may be more "legible" word by word but less words may be perceived at a glance. This, in turn, might result in a loss of continuity and contextual meaning which otherwise would contribute to reading speed. It is possible that both image clarity and perceptual factors, such as scanning patterns, contribute to ease of reading different sized type as reasured by reading rate and accuracy. Frequency, amplitude, and their interactions significantly affected reading performance but the effect of frequency was small in comparison to amplitude. Vibration of the image at 1/8-inch amplitude produced a small but measurable decrement in performance while 1/4-inch vibration reduced performance levels by 50 to 95 percent of those associated with steady viewing conditions. Displays having low brightness and low resolution were much more susceptible to degradation from vibration than bright, high resolution displays. As would be expected, the small image was more vulnerable to vibration than the larger sizes used. The results show clearly that for the combinations of image brightness and ambient illumination used, it is possible to have too bright an image as well as one which is too dim (see Figure 4(c)). Under low ambient illumination, excessive brightness causes irradiation or spilling of light at the figure/ground boundaries with resulting loss of image clarity and definition. Further, if the image is subject to vibration, excess image brightness combines with the vibration through the mechanism of retinal image persistence (the perception of an image on the retina after the stimulus is removed) to reduce visibility. The spot "seen" after watching a photo flashbulb being fired is one example. This effect can be readily verified by simply reducing the brightness of the vibrating image and observing the immediate improvement in legibility. This can be done any number of ways, e.g., by reducing projection lamp output or simply viewing the screen through a filter. An additional word is perhaps merited concerning the parameters of image polarity and color which were found to be non-significant in the present experiments. Regarding polarity, it would appear that displays of equivalent brightness and contrast are equally legible. This is not to say that users will not express a preference for one polarity or the other. In a study of polarity preference for reading patent drawings, Bloch, et al (1968) concluded that the subjects preferred searching dark lines on a light surround. Notable in that study, however, was the observation by subjects that: "Diffusing of light was more apparent with negative film, sometimes causing images to expand and look blurred." That investigator concluded that "the blurred images resulted from light diffusion and were an inherent property of negative film, not an effect of the machine used". A similar effect was observed in the present study. However, it is felt that the problem is one of too much brightness contrast rather than an inherent characteristic of negative film. This difference in conclusions seems to support further the need for brightness controls on viewing devices. Finally, it should be noted that the present openiments did not address the issue of polarity preference. There may have been a preference even though performance was the same for positive and negative images. Regarding the question of red vs. white images which has relevance to maintenance of operator dark adaptation, the results showed no difference in
performance as a function of color. Comparisons were made under equal brightness conditions, however, and use of a red filter, goggles, etc., in the operational setting would possibly require a compensatory increase in display brightness. Introduction of a red filter without brightness compensation would be expected to reduce legibility depending upon the original level of brightness and other display parameters. ### CONCLUSIONS - 1. Display legibility is a complex entity dependent upon a range of optical, physical, and perceptual factors. The present study provides quantitative data showing the manner in which critical parameters interact and + ir relative contribution to or degradation of display legibility. - 2. I e resolution is the single most important factor in display legibility. Under static viewing conditions and adequate image brightness and size, 20 lines/mm may represent an acceptable level of resolution. Under conditions of image vibration, 120 line/mm appears necessary to achieve any reasonable degree of display legibility. - 3. Image brightness is an important element of display legibility. The means for adjusting brightness over a significant range (5 80 ft-L) is highly desirable and is essential where ambient light can not be controlled. - 4. Ambient light is of concern to the extent that it can not be controlled. The greater the range of ambient light encountered, the greater is the need for adequate shielding of the display and provisions for display prightness adjustment. - 5. Image polarity did not differentially affect display legibility as measured by reading speed and a uracy. Operator preference was not examined and conclusions in this regard may not be drawn. - 6. Image vibration, depending upon the frequency and amplitude, can substantially degrade display legibility. For frequencies up to 30 Hz at least, amplitude rather than frequency appears to be the critical factor. While 1/8-inch amplitude vibration may be tolerated under otherwise good viewing conditions, 1/4-inch vibration of the image renders the display illegible for all practical purposes. Further, because of possible amplification by optical lever effects, (as where a mirror or prism in the projector is subjected to low amplitude vibration), image displacement of up to 1/4-inch is entirely possible in the shipboard environment. - 7. Image color (white vs. red) did not differentially affect reading performance. Provided that brightness loss can be compensated for, it would appear that a red filter, goggles, etc., may be used in the operational setting without penalty to display legibility. - 8. The display parameters investigated interact in a complex manner, and optimal value of one can not be independent of the others. The normalized data presented in Tables 8 through 11 provide a first estimate of tradeoffs which may be made among the parameters to achieve equivalent levels of legibility for rear projection of text materials. ### Exhibit 1(b) # Values of the Test Parameters ## Experiment No. 1 | _ | |-----------| | (inches) | | Amplitude | | Amp | | Vibration | | A A | Vibration Frequency (Hz) $$A_0 = 0$$; $A_1 = 1/8$; $A_2 = 1/4$. $B_1 = 4$; $B_2 = 28$; $B_3 = 80$. $F_0 = 0$; $F_1 = 15$; $F_2 = 30$. $I_1 = 0$; $I_2 = 25$; $I_3 = 50$; $I_4 = 100$. $P_1 = \text{negative}$; $P_2 = \text{positive}$. $P_1 = P_2 =$ ### Experiment No. 2 $$A_0 = 0$$; $A_1 = 1/8$; $A_2 = 1/4$. $B_1 = 8$; $B_2 = 28$; $B_3 = 48$. $C_1 = w^L$, i.e.; $C_2 = red$. $F_0 = 0$; $F_1 = 15$; $F_2 = 30$. $P_1 = negative$; $P_2 = positive$. $R_1 = 10$ $R_2 = 20$; $R_3 = 60$. $S_1 = 0.67:1$; $S_2 = 1:1$; $S_3 = 1.33:1$. ### Exhibit 1(a) Values of the Test Parameters ### Experiment No. 1 - A -- Vibration Amplitude (inches) $A_0 = 0$; $A_1 = 1/8$; $A_2 = 1/4$. - B -- Image Brightness (ft-L) $B_1 = 4$; $B_2 = 28$; $B_3 = 80$. - F -- Vibration Frequency (4z) F₀= 0; F₁ 15; F₂=30. - 1 -- Ambient Illumination (ft-c) $I_1 = 0$; $I_2 = 25$; $I_3 = 50$; $I_4 = 100$. - P -- Image Polarity P_1 = negative; P_2 = positive. - R --- Image Resolution (cycles/mm) $R_1=10$; $R_2=20$; $R_3=60$. - S -- Image Size (12 pt. 12 pitch type) $S_1=0.67:1$; $S_2=1:1$; $S_3=1.33:1$. ### Experiment Nc. 2 - A -- Vibration Amplitude (inches) $A_0 = 0$; $A_1 = 1/8$; $A_2 = 1/4$. - B -- lmage Brightness (ft-L) $B_1 = 8$; $B_2 = 28$; $B_3 = 48$. - C -- Image Color C₁= white; C₂= red. - F -- Vibration Frequency (Hz) $F_0 = 0$; $F_1 = 15$; $F_2 = 30$. - P -- Image Polarity P_1 = negative; P_2 = positive. - R -- Image Resolution (cycles/mm) R₁=10; R₂=20; R₃=60. - S -- Image Size (12 pt. 12 pitch type) $S_1=0.67:1$; $S_2=1:1$; $S_3=1.33:1$. ### PART II ### SURVEY OF AVAILABLE MICROFORM EQUIPMENT The object of this phase of the study was to assemble in convenient form a reference source of presently available microform equipment. The information was obtained through correspondence with major manufacturers of the equipment in the United States and Foreign countries. The technical and trade literature was searched for relevant information and leads to suppliers. Where possible, direct measurements of resolution and screen brightness were made through cooperation of the manufacturers. To further supplement available literature, demonstrations and briefings on a variety of equipment, notably storage and retrieval systems, were witnessed. In the request for information, the contract was referenced and the nature and significance of the study was indicated. Of the 75 manufacturers to whom inquiries were directed, 30 responded with positive information. Several indicated that they were no longer involved in the area and the remainder failed to respond. A follow-up letter was sent to those who did not respond initially. This increased the return by approximately 20 percent. The survey was designed to obtain a representative sample of currently available equipment. Failure to includ a manufacturer or device in no way reflects upon either the maker or the equipment. ### Summary of Microform Equipment The results of the survey are presented in Tables 12 through 21. Tables 12 through 16 cover domestic equipment. Tables 17 through 21 cover devices of foreign manufacture. Addresses of the manufacturers are given on page 125. TABLE 12 Survey of Microform Reader Equipment (United States) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | |---|--|---|---| | Special Features/
Accessories | Built-in glare shield. Wall projection. Outlet adapter for remote 12 volt operation. Image rotation for 4"x6" fiche. | Image rotation 360 degrees. | At 22x, projects two 8½"x11" documents simulta- neously. High-low illumination levels. | | Base
Price | | | | | Dimensions/
Weight/
Power | 7" high
13" wide
20" deep
16 1bs.
117 VAC
50/60 Hz
12 VDC | 24" high
16" wide
19" deep
38 lbs.
115 VAC
60 cycles | 2536" high
2058" wide
1714" deep
60 lbs.
117 VAC
50/60 Hz
5 amps | | Film Size
Accepted | 21x
(fixed) NMA fiche
and jackets
up to 6"x6" | <pre>24x 4"x6" pos./ (fixed) neg. fiche 4"x6" jackets</pre> | 22x to 6"x73a" 2
30x COSATI,NMA, 2
(fixed) or TAB cards 1
jackets 6
EAM aperture 1
cards 5 | | Magnif. | 21x
(fixed) | 24x
(fixed) | 22x
30x
(fixed) | | Screen
Size/
Brightness | 11"x11"
500-hour
ejection
lamp. | 14"×14" | 14"x20"
420 watt
lamp | | Model No. | MASCOT
(Portable) | HEADL INER | ono | | Manufacturer | Bell & Howell Co. | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Projects, cuts, and files l6mm film in microfilm jackets. Cuts film exactly by exposing knife on screen. Variable brightness cortrol. | Image resolution at center is 5.0 lpmm; covers, 4.5 lpmm. High-low illumination levels. Manual image rotation. | | Swivel base for reader.
Left hand operation models
(4305-15L and 4305.20L). | |----------------------------------|---|--|--|---| | Base | | | 5240.00 | \$216.00
15x
5248.00
20x | | Dimensions/
Weight/
Power | 20" high
2012" wide
2012" deep
70 lbs
115 VAC
50/60 Hz
1.5 amps | 13" high
i3" wide
7'2" deep
7'5 1bs.
115 VAC | 21" high
18" wide
22" deep
21" high
18" wide
18" deep
both models
115 VAC | 7 | | Film Size
Accepted | 16mm rell
film in
100' length | DoD, NMA,
COSATI
m'crofiche
to 4"x6" | 4"x6" 3"x5" 34"x738" microfiche & jackers 16mm film cartridge | EAM aperture
cards
(DoD only) | | Magnif. | 14.5× | 20x
24x
(fixed) | 24×
40× | 15x
20x | | Screen
Size/
Brightness | 8"x8" 21 volts, 150 wett halogen lamp | | 11"x14" quartz jodine lamp with reflector and heat filter | 10½"x12"
high in-
tensity
filament
lamp | | Model No. | 1600
(Reader/
Filler) | 1.3 | 1325 | 4305 | | Manufacturer | Bell & Howell Company (cont.) | A Corpo atio | aphix | Eugene Dietzgen
Company | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Fold away viewing screen.
Image rotation 360 degrees. | \$545.00 Variable speed; electrically
driven; high speed moves film through reader from 15-20 secper 100 feet. | Full "O" aperture card pro- | Jected on screer. | |----------------------------------|--|--|-----------------------------|--| | ı.se
Price | \$285.00
17x
23x
23x
\$315.00
30x
43x | | A | \$750.00 | | Dimensions/
Weight/
Power | 10" high \$285.00
13" wide 17x
11½" deep 23x
1/ 1bs. \$315.00
100-120 VAC \$315.00
50/60 Hz 43x | 28" high
20" wide
28" deep
40 lbs.
100-125 VAC
60 Hz
4 amps | 25" high | 29" Wide
29" deep
115 VAC
60 cycles
5 amps | | Film Size
Accepted | 16 mm or
35 mm roll | 16 mm roll
or cartridge
100' length | | 5"x8" ARaperture cards and 35 mm roll film100 ft | | Magnif. | 17x
23x
30x
43x | 27× | 14.75× | | | Screen
Size/
Brightness | 14"x14"
low volt.
high in-
tensity
filament
lamp | 16"x16"
80 watt
halogen
lamp | 18"x24" | Jamp | | Model No. | 4307
(Portable) | 4311 | 4313-A | 4313-AR | | Manufacturer | Eugene Dietzgen
Company
(cont.) | | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Manufacturer Mc Eugene Dietzgen 43 (cont.) 43 | Model No. 4315 4316 4317 | Screen Size/ Brightness Brightness 10w volt. high intensity lamp 14"x20" 500 watts 12"x12" | Magnif.
19x
25x
30x
42x
42x | w p = | Dimensions/ Weight/ Power 23½" high 11¾" wide 15¼" deep 21 lbs. 117 VAC 50/60 Hz 1 amps 24½" high 20½" high 20½0 Hz 5 amps 22" high 15" wide | Base
Price
\$178.00
\$22x
30x
30x
42x
4317
6410.00 | Base Special Features/ Price Accessories \$178.00 \$400.00 At 22x, two adjacent images 22x projected simultaneously. Two-levf' intensity control. \$420.00 \$42x 4317 #417 #with counter. | | |---|--------------------------|--|--|------------|--|--|--|--| | | | high in-
tensity
filament
lamp | | cartridges | 15" deep
100-125 VAC
60 cycles
4 unps | \$417-W
\$466.00 | 4317-M per 100 feet.
4317-M per 100 feet.
\$466.00 Image rotation 90 degrees. | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Base Special Features/
Price Accessories | \$247.00 | \$216.00
15x
\$248.00
20x | \$325.00 Image rotation 360 degrees. \$340.00 30x,43x | Image rotation 270 degrees. | |---|---|-------------------------------------|--|----------------------------------| | | | \$ 22 | \$3
30 | | | Dimensions,
Weight/
Power | 23½" high
11¾ " wide
15¼ deep
21 lbs.
117 VAC
50/60 Hz | | | | | Film Size
Accepted | to 4"x73g"
microfiche
and aperture
cards | EAM aperture
cards
(DoD only) | 16 mm and
35 mm roli
film | aperture
cards | | Magnif. | 19x
25x | 15×
20× | 17×
24×
30×
43× | 15× | | Screen
Size/
Brightness | 3);"x12"
low volt.
high in-
tensity
filament
lamp | 10½"×12" | 12"×12" | 10%,"x12"
 10w volt
 amp | | Model No. | 4519 | 4314 | 4308 | 576-90 | | Manufacturer | Eugene Dietzgen
Company
(cont.) | | 1. 14 E | Duksne Corp. | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Special attachment for
roll film.
Image rotation 90 degrees.
Variable brıghtness control. | \$160.00 Special attachment for microfiche and roll film. Image rotation 90 degrees. Variable brightness control. | MPG Provision for using indexed film. \$1105. film. \(\text{A}\) \(\text{Printer}, \text{Model ERG available BRG-TH} \) \$1349. \(\text{Accepts magazines with special BRG-TH} \) \(\text{Special BRG-TH} \) \$1349. \(\text{Accepts magazines with special BRG-TH} \) \(\text{Special \t | |----------------------------------|--|---|---| | Base | \$345.00 | \$160.00 | MPG F1105. f
w/o lens kitt
MPG-TH S
S1349. p
w/o lens kit
lens kit
lens kit
S112.80 | | Dimensions/
Weight/
Power | 26" high
14½" wide
18" deep
44 lbs.
115 VAC | 24" high
12" wide
12" deep
22 lbs.
115 VAC | 25¾" high
22½" wide
32" Geep
70 lbs.
120 VAC
50/60 Hz
6 amps | | Film Size
Accepted | 16 and 35mm rcll film aperture cards NMA and COSATI fiche 3"x5" and 4"x6" jacket | 4"x6" micro-micro-jacket film aperture cards | roli film | | Magnif. | 18× | 20× | 19 x
23 x
34 x
43 x | | Screen
Size/
Brightness | 14"x14" type FCR Tungsten halogen lamp | 10"x13"
0uKune
456-59
lamp, low
voltage | 15"×15" | | Model No. | EXPLORER
14
27A25 | 27A5 | RECORDAK
MOTORMATIC
MPG
MPG-TH | | Manufacturer | DuKane Corp.
(cont.) | | Eastman Kodak
Company | TO STAND STA TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | | | Υ | 1 | , | |----------------------------------|---|--|--|---| | Special Features/
Accessories | Image rotation 270 degrees. | Adaptor to accommodate conventional 16 inm roll film. | Image rotation 270 degrees. | S183.30 Dual image projection. W/o lens fit and Can view microfilm in cards front and film jackets. Alass Pointer locates each fiche lens kithinstantly and projects. \$18 80 each | | Base
Price | \$618.45
W/o lens
kit
lens kit
\$65.80
each | \$573.40 | \$427.80
W/o lens
kit
lens kit
\$65.80
each | \$183.30 W/o lens kit and front alass lens kit see \$18.80 each | | Dimensions/
Weijht/
Power | 19½" high
13¾" wide
12½" deep
27 lbs.
117 VAC
50/60 Hz | 21½" high
14" wide
19½" deep
32 lbs.
117 VAC | 19½" high
16" wide
11½" deep
23 Tbs.
117 VAC
50/60 Hz | 19" high
19" wide
21" deep
20 1bs
120 VAC
50/60 Hz
2.5 amps. | | Film Size
Accepted | 16 mm roll
film | RECORDAK
film mag.
only | 16տտ roll
film | DoD, NMA,
and COSATI
wicrofiche
format
to 3',"x7½,"
and 4"x6" | | Magnif. | 20x
24x
32x
40x | 20x
(fixed) | 20x
24x
32x
40x | 18.5x
231.5x
23.5x
25.7x | | Screen
Size/
Brightness | 9"×12" | 10%"×12" | 9"×12" | | | Model No. | RECORDAK
STARMATIC
Model PVM | RECORDAK
STARLET
Mcdel FTA | RECORDAK
310 Reader
Model PVA | RECORDAK
EASAMATIC
Model PFCD | | Manufacturer | Eastman Kodak
Company
(cont.) | | | | AND THE PROPERTY OF PROPER TABLE 12 (cont.) Survey of Microform Reader Equipmen'.
(United States) | ! | | | <u> </u> | |----------------------------------|--|--|---| | Special Features/
Accessories | \$329.00 Image rotation 360 degrec. w/o ens kit ens kit \$75.20 each | | | | Base
Price | - , , | \$225.60 | \$878.90 | | Dimensions/
Weight/
Power | 2638" high 1228" wide 18" deep 39 1bs. 115 VAC 50/60 Hz 0.5 amps 60 watts | 21%" high
12%" wide
13" deep
31 lbs.
115 VAC
50/60 Hz | 28½" high 52413½,6" wide 28½, deep 100 1bs. 115 VAC 50/60 Hz 5 amps | | Film Size
Accepted | l6mm film in
jackets
microfiche
3"x5"
4"x6"
5"x8"
3%"x73%" | aperture
cards | aperture
cards and
roll film | | Magnif. | 18x
23x | 15x | 15x | | Screen
Size/
Brightness | 10½"×13¼" | 10½" × 12" | 18"x24"
500 watt
projector
lamp | | Model No. | RECORDAK
Model
PK-1013 | RECORDAK
Model MKR-1
(Purtable) | RECORDAK 18"x24"
1824 500 watt
Model MKG-1 projector
lamp | | Manufacturer | Eastman Kodak
Compary
(cont.) | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Part of a microstrip
retrieval station.
Printer Model EG available
for reader (\$940.00). | \$1692. Magazine loading only, self w/o lens threading. kit Zoom system available. \$89.30 Image rotation 360 degrees. | Model IC-4 Image Control
keyboard (random search
of files on roll microfilm).
Image rotation 360 degrees. | |----------------------------------|--|--|--| | Base
Price | \$817.80
w/o lens
kıt
lens kit
\$75.20
each | \$1692. NW/0 lens tkit lens kit \$89.30 leach | \$1217.
Model 4
Image
Control
Keyboard
\$4160. | | Dimensions/
Weight/
Power | 205 ₈ " high \$817.80
213 ₄ " wide w/o lens
28" deep kit
82 lbs. lens kit
117 VAC \$75.20
50/60 Hz each
2.9 amps | 212" high
254" wide
38%" deep
140 ibs.
126 VAC
50/6C Hz | 25" high
16½" wide
29" deep
50 1bs.
120 VAC
50/60 Hz | | Film Size
Accepted | film strips | l6mm roll
film in
magaz:es: | l6mm roli
film in
magazine
100 ft. ìong | | Maynîf. | 17.5x
2.5x | 18-24x
21-28x
27-30x
34-45x | 23× | | Screen
Size/
Brightness | | | 13 ¹ , ×13 ¹ ; | | Model No. | RECORDAK
MICROS.AIP
Madel PGR | MICROSTAR
PR-1 | RECORDAK
LODESTAR
Model
PS-1K | | Manufacturer | Eastman Kodak
Company
(cort.) | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) High-low illumination levels High-low illumination leveis. Dual magnification (10x and 24x) available. Projects 11"x14" computer output images at 3/4 size. Screen tilts 10 degrees. Computer format at 42x. Special Features/ Accessories \$225.25 \$109.65 Base Price 18½" high 9½" wide 16 " deep 110-120 VAC all standard 19" high microfiche 16½" wide and 25" deep aperture 110-120 VAC Dimensions/ Weight/ Power 15" high 19" wide 12" deep 25,5 Tbs. 115 VAC 50/60 Hz 150 watts 50/60 Hz 1.5 amps 50/60 Hz .5 amps 3"x5" and 4"x6" micro-fiche jacket Film Size Accepted 4"x5" 3½"x7½" microfiche aperture cards Magnif. 18x 24x 24× 42× Screer Size/ Brightness 8½"x11" 550 hrs. 150 watt long life lamp 11"x8½" horizontal quartz halogen lamp 11½"x15½" 150 watt quartz halogen lamp Model No. **D7504** 7500 7502 GAF Corporation Manufacturer THE STATES OF THE PROPERTY TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Variable illumination. | Image rotation 360 degrees. Foot pedal permits high speed or scanning advance of film. | 0 | Roll film carrier optional equipment. At 6.5x, full view of doc. | |----------------------------------|---|--|--|---| | Base
Price | entra | | \$550.00 | | | Dimensions/
Weight/
Power | | | 30" high
27" wide
28" deep
110 VAC
60 Hz
5 amps | 13" high
10" wide
15" deep
19 lbs.
115 VAC
60 Hz
1 5 amps | | Film Size
Accepted | roll or
strip film | 16mm and
35 mm film | 105 ատ Բilտ | aperture
cards and
16mm or
35mm roll
film | | Magnif. | | from
23x
to
36x
autofocus | 4× | 6.5x
15x | | Screen
Size/
Brightness | | | 15"x23"
150 watt
lamp | 8"×10" | | Model No. | 35 VM | AUTOFOCUS | MICROMASTER
52 2035 | MICROMASTER
52 9949 | | Manufacturer | Itek Corporation | | Keuffel & Esser
Company | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Manufacturer | Mcdel No. | Screen
Size/
Brightness | Magnif. | Film Size
Accepted | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |--|------------------------|---|------------|--------------------------------------|---|------------------------------------|--| | Keuffel & Esser MICROMASTER
Company 52-9921 | MICROMASTER
52-9921 | 14"×15" | 24× | 4"x73 ₆ "
infcrofiche | 25" high
18" wide
18½" deep | | Displays 8½"xll" documents
in full view. | | | 52-9923 | | 30× | 6"x8"
microfiche | 70 lbs.
115 VAC
60 Hz
3.5 amps | | | | | MICROMASTER
52-9922 | 14"x22" | 24× | 4"x73 ₈ "
microfiche | 25" high
23" wide
16½" deep | | Displays two-8½"x11"
documents or one-11"x17"
document. | | | 52-9924 | | 30× | 6"x8"
microfiche | 73 108.
115 VAC
60 Hz
3.5 amps | | | | Micro Image
Corporation | MICRA 210 | 11"x8' ₂ "
150 watt
quartz
halogen
lamp
20 ft-c | 18x
32x | 4"x6" micro-
fiche and
jackets | 16" high
13" wide
9" deep
12 lbs.
115 VAC
50/60 Hz | \$129.00
18x
\$149.00
32x | \$129.00 Projects images on wall. 18x \$149.00 Image resolution is 3.2 lppm 32x Image rotation; manual. | | | MICRA 220 | | 24× | l6mm roll
film in
cartridge | 16" high
12" wide
12" deep | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Manufacturer | Model No. | Screen
Size/
Brightness | Magnif. | Film Size
Accepted | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |--------------|--------------------------|--|--------------------------|--|--|---------------|--| | 3M Company | Series II
400 C | 170 watt
20 volts
quartz
iodine w/
reflector | | 16mm roll
film in
cartridge | 26½" high
17" wide
21½" deep
110 VAC
60 Hz
4 amps | | Large screen attachment
available to read computer
data. | | | FILMSORT
Designer 184 | 18"x24"
300 watt
120
volts
T-10-C13
base horiz
(Sylvanía) | 15× | "D" aperture
cards | aperture 31½" high
26" wide
27" deep
55 lbs. | | Screen angled between
15 and 20 degrees.
Image rotation 180 degrees.
Designed to read engineering
drawings. | | | 400 | | 14.88×
through
29× | 14.88x standard
through types and
29x format of
pos. & neg.
film | 28½" high
17½" wide
22¾," deep
110 lbs.
90-130 VAC
60 Hz
10 amps | | Retrieves images from a file of 10,000 images in seconds with digital keyboard input. Rewinds film automatically at end of search. Imaye rotation available. | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | | | 7 | | |---|--|--|---| | Image can be projected on
wall. | Image brightness variable.
Can be modified to take
6"x8" microfiche. | Projects image on wall. Modified to take 6"x8" microfiche. Image brightness variable. | Dual page viewing.
Pointer locates fiche
and projects automatically. | | | | | | | 21" high
12½" wide
8½" deep
110 VAC
60 Hz | 22" high
19" wide
21" deep
65 1bs.
110-120 VAC
50/60 Hz
160 watts | 21" high
16" wide
18" deep
35 lbs.
110-120 VAC
50/60 Hz | 24" high
21½" wide
21½" deep
65 lbs.
110-120 VAC
50/60 Hz
160 weths | | 3"x5"
4"x6"
3%"x73%
microfiche | up to 4"x6"
microfiche | 3"x5"
4"x0"
3½"x736"
microfiche | 3"x5"
4"x6"
6"x6"
microfiche | | 18x
through
38x
inter- | 42× | 18x
24x
Special
21x | 33 X X X 33 X X X X X X X X X X X X X X | | 9½"x10½"
quartz
halogen
lamp | 11%"x15"
150 watt
silica
helogen
lamp | 11"x11 ² B"
100 watt
silica
halogen
lamp | 13%16"
x 19%"
150 watt
high-
silica
halogen | | 456-300
(Portable) | 456-942 | 456-400 | 456-800 | | National Cash
Register Co. | | | | | | Cash 456-300 9½"x10½" 18x 3"x5" 21" high quartz through halogen lamp 12½" wide wall. IZ½" wide wall. Co. (Portable) halogen lamp 38x 3½"x7¾ 8½" deep wall. change change change change change change | Cash 456-300 9\frac{9\frac{4}{3}\times \text{10}\frac{1}{9}\times \text{10}\frac{1}{2}\times \text{11}\text{11}\text{10}\frac{1}{2}\text{11}\text{11}\text{10}\text{10}\text{11}\text{11}\text{10}\text{11}1 | Cash 456-300 94.x10\(\frac{94.x10\text{s}}{\text{quartz}} \) through 4.x6" 31.x5" 124" wide adeptonated interface of 124" wide and of 125" wide and of 125" wide and of 125" wide and of 125 | THE PROPERTY OF O TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Model No. Size/ Magnif. | 455 PCMI 11"x11" 150x 150 watt quartz halogen incand. | 1600 8"x8" 14.5x quartz halogen lamp, 21 volts, 150 watts | 300 XF 100 watts 110 vclts (Portable) CDS or CDX lamp | 12 AMB uses 12x
16 AMB Light 16x | 12 X battery 12x
16 X operated 16x | |----------------------------------|---|--|--|-------------------------------------|--| | Film Size
Accepted | PCMI ultra-
fiche,4"x6" | roll film
into
film jackets | COSATI
standard
microfiche
jackets | 4"x6"
6"x8"
microfiche | microfiche | | Dimensions/
Weight/
Power | 26" high
16" wide
24" deen
60 lbs.
90-127 v
47-63 cps. | 20½" high
20" wide
20½" deep
70 lbs.
115 VAC
50/30 Hz
1.5 amps | 8" high
6" deep
3"
wide
3 lbs. | 6 ounces | 7 ounces
standard
pen-light
batteries | | Base
Price | | | 869.50 | \$15.95 | \$17.95 | | Special Features/
Accessories | | Designed specifically for inserting single or multiple microfiche images into microfilm jac'ets. 700 stríps per hour. | Projects images on wall. Adapters for COM format microfiche, 35mm color slides, and film strips. | Pocket microfiche viewer. | Pocket microfiche viewer. | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Pocket microfiche viewer. | Projects images on wall. Adapter to show color slides and film strips. | \$249.00 Lens: 36mm or 28mm.
Four illumination settings. | Variable brightness control. Lens: 73mm for 10x to $20x$; 38mm for 20x to $40x$. Printer makes paper copies up to $14"x20"$. | Variable brightness control. | |----------------------------------|---|--|---|---|--| | Base | \$3.00 | \$79.50 | \$249.00 | | | | Dimensions/
Weight/
Power | 2 ounce | 6" high
3" deep
8" wide
3 lbs. | 17½" high
14" wide
15" deep
25 lbs.
115 VAC
50/60 Hz | 43" high
26" wide
29.5" deep
150 lbs. | | | Film Size
Accepted | 4"x6"
microfiche
aperture
cards | aperture
cards | up to
7.48"x7.88"
microfiche
and aperture
card | "D" aperture
cards
COSATI
microfiche
6"x41/s"
film jackets | microfilm | | Magnif. | 8x
5x | | 18x
24x
special
30x | 10x to
40x
variable | ed Bride abribbingspeatr ca. | | Screen
Size/
Brightness | | 100 watt
CDS or CDX
lamp | 11 ⁵ 16"×14" | 14.5"x20.5"
CWA
120 volts
750 watts | 30"x42" | | Model No. | 8 X
5 X | 400 | 640 | MULTIFOCUS 14.5"x20
CVA
120 vol
750 wat | EXPEDITER | | Manufacturer | Taylor-Merchant
Corporation
(cont.) | | Teledyne Post
Company | VueTech Corp. | en e | Think here retrieved to the control of TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) には、100mmので | | | • | • | | |----------------------------------|---|---|---|--| | Special Features/
Accessories | Two position brightness control. | Optional batteries, 12 volts, 5 lbs; also auto cigarette lighter, 12 volts. | Optional batteries, 12 volts, 5 lbs; also auto cigarette lighter, 12 volts. | Optional batteries, 12 volts 5 lbs; also auto cigarette lighter, 12 volts. | | Base
Price | | | | | | Dimensions/
Weight/
Power | 23" high
19" wide
20" deep
32 1bs.
110-120 VAC
50,60 Hz
200 watts | 19" high
2334" wide
1834" deep
18 16s.
110-120 VAC
50/60 Hz
3 AG fuse
5 amps | 17½" high
13¾" wide
18½" desp
16 1bs.
110-120 VAC
50/60 Hz | 19" high
133c, wide
183 deep
17 lbs.
110-270 VAC
50/50 Hz | | Film Size
Accepted | aperture
cards
microfiche
jackets | 16икп-3М
cartridge | aperture
cards | l6mm on 3"
reel | | Magnif. | 12.2× | 20x
special
24x | 6.5x
full view
15x
quadrant
view | 20x
special
24x | | Screen
S1ze/
Brightness | 15"x18" 24 volts 150 watt quartz halogen lamp | 9"x12"
12 volts
24 watts
300 hour
lamp | 10"x11"
12 volts
36 watts
300 hour
lamp | 9"x12"
12 volts
24 watts
300 hour
lamp | | Model No. | NGRMANDALE
1518 | "C"
(Portable) | "QS"
(Portable) | "RM"
(Portable)
"RH"
(Portable) | | Manufacturer | Washington
Scientific
Industries, Inc. | | | | TABLE 12 (cont.) Survey of Microform Reader Equipment (United States) | Special Features/
Accessories | Optional batteries, 12 volts; weight, 3 lbs. Also adaots to 12 volt automobile lighter. Indexing grid card. | Variable brightness control.
View computer output sheet.
Resolution 4.5 lpmm. | |----------------------------------|---|--| | Base | | | | Dimensions/
Weight/
Power | 19½" high
13¾" wide
18½" deep
16 155
110-120 VAC
5 amps | 22" high
164" wide
253 ₈ " deep
110 VAC
50/60 Hz
400 watts | | Film Size
Accepted | 4"x6"
microfiche
and jeckets | l6mm film
in 3M
cartridges | | Magrif. | 20x
spec1al
24x | 24× | | Screen
Size/
Brightness | 9"x12"
12 volts
50 watt
300 hour
lamp | 14"x14"
quartz
halogen
lamp,
24 volts,
150 watts | | Mudel No. | "MF"
(Portable) | NORTHSTAR 1 | | Manufacturer | Washington
Scientific
Industries, Inc.
(cont.) | | TABLE 13 是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他 Survey of Microform Reader-Printer Equipment (United States) | Special Features/
Accessories | Variable brightness control. Image rotation 360°. Makes copies in 8 sec. Special lenses: 10.5x, 13.4x, 20.1x, 27.9x, 33.8x, and 37x. | Rotation for 4"x6"
size fiche and jacket.
Makes copies in 8 sec. | Lens continuously variable. Reader and printer purchased separately. Image rotation 360°. Prints made at any magnification. Three levels of brightness control. | |-------------------------------------|--|--|---| | Base
Price | | | | | Dimensions/
Weight/
Power | 26" high
13" wide
30" deep
68 lbs.
1110-120 Vac
60 Hz | 294" high
18" wide
25" deep
145 lbs.
117 VAC
60 Hz | 29½" high
22½" wide
34" deep
117 16s.
177 VAC
60 Hz
3.5 amps | | Printing
Process/
Output Copy | 16mm or black&white 26" high 35mm roll silver print 13" wide film copics 80" deep micro- 8½"x11" 68 lbs. fiche 110-120 jackets 60 Hz | COSATI & electro- 294" high NMA fiche photographic 18" wide jackets paper prints 25" deep dup to 8½"x11" 145 lbs. 6" x 6" pos. print 60 Hz | 16mm roll silver print 29½" high film or paper copies 22½" wide cartridge 8½" x 11" 34" deep 117 15s. | | Magnif. Accepted | l6mm or
35mm roll
film
micro-
fiche
jackets | COSATI & NMA fiche jackets up to 6" x 6" | | | Magnif. | 15x
25x
35x
(f1xed) | 18x
21x
24x
(fixed) | zoom
lens
20x to
40x | | Screen
Size/
Brightness | 11"x11" | 11"x11"
500 hour
lamp | 14"×14" | | Model No. | 530 D | REPORTER | Αυτοιοάο | | Manufacturer | Bell & Howell
Company | | AUTOLOAD | TABLE 13 (cont.) Survey of Microform Reader-Printer Equipment (United States) | Special Features/
Accessories | \$1264.30Accommodates magazine, less aperture cards, lens film jackæts, and kit microfiche with lens kit special attachment. \$98.70 Image rotation 2760. each Makes copies in 28 sec | \$1170.30 Prints produced at
less touch of button,
lens in seconds.
kit
lens kit
\$98.70 | Prints in 30 seconds.
| Prints in less than
30 seconds. Makes
up to 21 copies auto-
matically, 4/min. | |-------------------------------------|---|---|---|--| | Base
Price | \$1264.30
less
lens
kit
lens kit
\$98.70
each | \$1170.30
less
lens
kit
lens kit
\$98.70
each | | | | Dimensions/
Weight/
Power | 29%" high
165 ₈ " wide
27" deep
105 lbs.
117 VAC
50/60 Hz
300 watts | 29%" high
165%" wide
27" deep
100 1bs.
117 VAC
50/60 Hz | | | | Printing
Process/
Output Copy | automatic
8"x10" on
83 ₂ "xli
paper | | | 8"x18" to
18"x24" | | Magnif. Accepted | 16mm or
35mm roll
film
aperture
cards
2-channel
jacket | micro-
fiche
aperture
cards
jackets | 16 mm to
105 mm
roll film
or micro-
fiche | 16mm or
35mm film | | Magnif. | 11.8x
13.7x
17x
19x
22.5x
30x
38x | 11.8x
13.7x
17x
19x
22.5x
30x
38x | 14.5x | 14.5x | | Screen
Size/
Brightness | 11"×11" | | 18"×24" | 18"×24" | | Model No. | RECORDAK
MAGNAPRINT
PE-1A | RECORDAK
PFC-1A | 18-24 | "RS" | | Manufacturer | Eastman Kodak
Company | | Itek Business
Corporation | | Anceders in the solution of the control cont TABLE 13 (cont.) Survey of Microform Reader-Printer Equipment (United States) | Special Features/
Accessories | Printing time less
than 20 seconds.
Lamp intensity
variable. | Prints in 30 seconds.
Image resolution
3.5 to 4.0 lpmm
with film of 10^ lpmm | Excellent for
engineering drawings. | | |-------------------------------------|---|---|--|--| | Base
Price | \$4200.00 P | 5325.00 | <u>.</u> | | | Dimensions/
Weight/
Power | 355 lbs.
115 VAC
60 Hz
5 amps | 25" high
219" wide
26" deep
40 lbs.
105-120 VAC
60 Hz
8 amps | 32" high
31" wide
36" deep
110 VAC
60 Hz | 33½" high
31½" wide
36½" deep
310 lbs.
110-120 VAC
15 amps | | Printing
Process/
Output Copy | | dry-silver
paper prints
8½"xll" | 12"×18" to
18" x24" | 12" ×18" to
18"×24" | | Magnif. Accepted | 4"x6"
film | sheet
film up
to 4"x8" | aper ture
card | 35mm film
on reels
sheet
film
aperture
cards
jackets
micro- | | Magnif. | 4x | 20×
24× | | | | Screen
Size/
Brightness | 18"x24"
150 watt
120 voits
lamp | 12"x12"
6 volts
39 watt
lamp | | 13" x24" | | Model No. | MICRO-
MASTER
52-2038 | EXECUTIVE I | 200 | 200 R | | Manufacturer | Keuffel & Esser
Company | 3 М Сомралу | | | TABLE 13 (cont.) Survey of Microform Reader-Printer Equipment (United States) | Special Features/
Accessories | Image rotation 360°.
Copies in 6 seconds. | Copies in 20 seconds. | Large screen attach-
ment available. | Copies in 6 seconds.
Image rotation 3600. | | Copies in 6 seconds. | |-------------------------------------|--|---|---|--|--|------------------------| | Base
Price | | | | | | | | Dimensions/
Weight/
Power | 26½" high
17" wide
21½" deep | 26½" high
17" wide
21½" deep
110 VAC
60 Hz
10 amps | 26½" high
17" wide
21½" deen | 110 VAC
60 Hz
10 amps | | | | Printing
Process/
Output Copy | microfilm paper copies | dry paper
copies
8½ x12½ | | 8½"×11" | | 8½"x11" | | Magnif. Accepted | microfilm | micro-
fiche and
jackets
up to
5"x8" | 16mm and
35 mm | aperture
cards
micro-
fiche | Jacket
16mm and
35 mm
roll film | l6mm film
cartridge | | Magnif. | | | 8
8
2
2
3
3
4 | 12x
15x
15x
18x
21x | 2 × ×
3 2 3 3 4 × × | | | Screen
Size/
Brightness | 14"x12" | 200 watt
20 volts
quartz
fodine
lamp
with
reflector | 200 watt
20 volts | fodine
lamp
with | | | | Model No. | 400
(Large
Screen) | 400 | 400 B | 400 M | | Series II
400 C | | Manufacturer | 3M Company | | | | | | TABLE 13 (cont.) Survey of Microform Reader-Printer Equipment (United States) | Model No. Size/ Magnif. Accepted Outpu | micro-
fiche
<u>jackets</u>
aperture
cards to
6"x8" | 200 watt 16mm film dry paper 20 volts cartridge copy quartz iodine lamp with reflector | 12"x16" six cartridge dry-s
200 watt lenses film paper
high-avail. 8½")
111umin. lamp | 200 watt ten 16mm and dry-high- lenses 35mm reel prin illumin. avail. film aperture cards jackets fiche | |---|--|--|--|---| | | micro-
fiche
jackets
aperture
cards to
6"x8" | l6mm film
cartridge | | 16mm
35mm
film
apert
cards
jacke | | Printing
Process/
Output Copy | | dry paper
copy
8½"x11" | dry-silver
paper copies
8½"x11" | dry-silver
print paper
8½"xll" | | Dimensions/
Weight/
Power | | 26½" high
17" wide
21½" deep
110 VAC
60 Hz
10 amps | 31½" high
18½" wide
24¾" deep
140 lbs.
110 VAC
60 Hz
10 amps | 31;" high
184" wide
2434" deep
140 1bs.
110 VAC
60 Hz
10 amps | | Base Special Features/
Price Accessories | Image rotation 90°. | Copies in 6 seconds. Handles Duo and Duplex imaged microfiim. | Copies in 9 seconds.
Image rotation 360°. | Copies in 9 seconds.
Image rotation 360°. | | /s | . 00 | .spu | nds.
50°. | .00°. | A THE PARTY AND A PROPERTY PRO 1,1BLE 14 是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们也是一个人,他们是一个人,他们是一个人 Survey of Microform Camera Equipment (United States) | Manufacturer Mc | Model No. | Type of | Reduct. | Input | Operating | Dimensions/
Weight/ | Base | Special Features/ | |-----------------|--|--|--|---|-----------------------------|---|--|--| | | | E . | Katio | coby | paadc | 1 | ָבָּבְיבָּבְיבָּבְיבָּבְיבָּבְיבָּבְיבָבְיבָ | עררבי זער ובי | | | TAB-
TRONIC | l6mm roll
film (day-
light)
100' long | 26:1 | up to
15" wide | up to
5000 1/min | 42" high
22" wide
11" deep
75 lbs. | | Single sheet feeding attachment; also roll stock attachment. | | | | | | | | 60 Hz | | Exposure: automatic. | | A.T. | DIRECTOR I | | 24:1
34:1
44:1 | from 600 check:
checks to minute
full size8000 full
documentssize doc. | S | 12½" high
20½" wide
28½" deep
109 lbs.
115 VAC
60 Hz | | Seif-contained camera removable without exposing film in unit. Exposes two rolls of film simultaneously. | | | MICROTWIN
(205G and
205F Reader) | Surm and
16mm roll
film | 30:1
44:1
0nly
16mm
film
24:1 | up to
11" wide
2" to 15"
long | | 43" high
32" wide
26" deep
125 155.
115 VAC
60 Hz | | Reader uses camera
lens for viewing pro-
cessed film.
Mag. of reader: 24x,
30x, and 44x.
Exposure: automatic. | | 1 () | 210K | 16 mm day-
loading
film on
100' roil | 24:1
30:1
44:1 | checks
punch
cards | 28,000/
hour
380/min. | 45" high
42" wide
23" deep
150 lbs.
115 VAC
60 Hz | | Automatic feeder
and stacker.
Signer and endorser
available. | TABLE 14 (cont.) Survey of Microform Camera Equipment (United States) | Manufacturer | Model No. | Type of
Film | Reduct.
Ratio | Input
Copy | Operating
Speed | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |-------------------------------------|-----------------------------|---|--------------------------------|---|------------------------|---|---|--| | Bell & Howell
Company
(cont.) | DIPLOMAT | 105mm
roll film
100 ft. | 10:1
to
26:1
variable | | 1 sec. per
exposure | 8'2" high
7' wide
7' deep
600 lbs.
110-120 VAC
50-60 Hz
20 amps | _ | Exposure: automatic. | | Eastman Kodak
Company | RELIANT 600
Model RW-1 | 16mm
film in
100' or
20G' roll | 24:1
32:1
40:1
45:1 | | | 16½" high
24" wide
25½" deep
155 Tbs.
117 VAC
50/60 Hz | \$2870.
plus
film
unit
\$837. | Interchangeable
film
units.
Single or twin roll
exposed simult.
Indexer available. | | | RELIANT 600K
Model RW-1T | 16mm
film | 24:1
32:1
40:1
45:1 | 51-col.
or 80-
column
tab card | 500 cards/
min. | 17" high
24" wide
29" deep
168 1bs.
117 VAC
50/30 Hz | \$5231.
plus
film
unit
\$837. | Interchangeable film
units for different
reduction ratios.
Twin roll exposure
simultanecusly is
possible. | | | RELIANT 400
Model RO-1 | l6mm
film | 20:1
32:1 | | | 15" high
25" wide
19" deep
75 1bs.
117 VAC
50/60 Hz
3 amps | \$1697.
plus
film
unit
\$555. | Interchangeable film
units available.
Single or twin roll
exposed simult. | TABLE 14 (cont.) Survey of Microform Camera Equipment (United States) | ires/ | able film
ifferent
atios.
win roll
ultaneously.
automatic. | le film
le.
required
matic.
nual. | able film able. automatic. win roll ultaneously | le film
ie.
n roli
taneously
lumin.
osure. | |----------------------------------|--|---|---|---| | Special Features/
Accessories | Interchangeable film
units for different
reduction ratios.
Single or twin roll
exposed simultaneously.
Exposure: automatic. | Interchangeable film
units.avaiiable.
Lens (\$89.30) required
Exposure: automatic.
Operation: manual. | Interchangeable film units available. Exposure: automatic. Single or twin roll exposed simultaneously Lens (\$89.30) required | Interchangeable film
units availabie.
Single or twin roll
exposed simultaneously
Adjustable illumin.
for diff. exposure. | | Base
Price | \$3567.
plus
film
unit
5784. | \$343.
plus
film
unit
\$249. | \$550.
plus
film
unit
\$249. | \$1175.
incl.
film
unit | | Dimensions/
Weight/
Power | 61" high
29" wide
35" deep
310 lbs.
120 VAC
50/60 Hz
6 amps | 12" high
16" wide
17" deep
22 1bs.
120 VAC
50/60 Hz | 37" high
29" wide
20" deep
45 lbs.
120 VAC
50/60 Hz | 6½" high
15½" wide
12½" deep
24 TES.
117 VAC
50/60 Hz | | Operating
Speed | 165 F.P.M.
(or 12,000
lines of
print-out
data/min.) | 60/min. | 60/min. | 60/min.
125 checks/
min. | | Input
Copy | computer print-out(up to 18" wide for 32:1 up to 14" wide for 24:1 up to 12" | file card
checks
ID cards
4½"xll½" | up to
11½"x15" | any
length,
12" wide | | Reduct.
Ratio | 24:1
32:1 | 21:1 | 22:1
27:1 | 20:1 | | Type of
Film | | | 16em film
190' roll | 16mm film
160' roll | | Model No. | ROTOLINE
Model RD-3 | STARFILE
Model RV-1 | STARFILE
Model RV-2 | RECORCAK
Model RP.1
(Portable) | | Manufacturer | Eastman Kodak
Company
(cont.) | | | | TABLE 14 (cont.) Survey of Microform Camera Equipment (United States) | Special Features/
Accessories | Special attachment
reduction ratio 27:1.
Exposure: automatic. | Special attachment reduction ratio 36:1. Exposure: automatic. | Interchangeable film
units.
Automatic and manual
light levels.
Exposure: automatic
or manual. | Records code on film
for use with infor.
retrieval systems.
Exposure: automatic
or manual. | |----------------------------------|---|---|--|--| | Base S
Price S | 53737. S
with r
film E | \$3925. S
With r
film E
unit | 57849. I
with u
film A
unit | \$9870. F | | Dimensions/
Weight/
Power | 102" high
72" wide
34" deep
165 lbs. | | 9' high
9'8" wide
6'9" deep
975 lbs.
120/208 VAC
115/230 VAC
50/60 Hz
20 amps | 102" high
72" wide
34" deep
205 1bs.
117 VAC
50/60 Hz | | Operating
Speed | | | | | | Input
Copy | up to
26"x36¾ _" " | up to
17½"x30" | up to
45"x63" | up to
14"x22" | | Reduct.
Ratio | 5:1
to
21:1 | 8:1
to
30:1 | six
preset
ratios
from 12:1
to 36:1 | 8:1
to
30:1 | | Type of
Film | 35mm film
16mm film
W/adapter | l6mm film
only | 35mm film
100' roll | 16mm film | | Model No. | MICRO-FILE
Model MRD-2 | MICRO-FILE
Mcdel
MRC-2/30 | MICRO-FILE
Model MRG-1 | MIRACODE
Model MRK-1 | | Manufacturer | Eastman Kodak
Company
(cont.) | | | | NATION OF THE PROPERTY TABLE 14 (cont.) Survey of Microform Camera Equipment (United States) | Manufacturer | Model No. | Type of Film | Reduct.
Ratio | Input
Copy | Operating
Speed | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |--|------------------------|---|---|--------------------|--------------------|--|---------------|--| | Itek Business
Products | 3536 | | 8:1 to
36:1 | up to
45"x63" | 2.5 sec. | | | Repeat cycling of any
number of exposures.
Exposure: automatic. | | Keuffel & Esser MICROMASTER
Company 52-2029 | MICROMASTER
52-2029 | 35.mm film
100' roll | 12:1
16:1
20:1
30:1 | up to
37½"x52½" | | 9'8" high
8'4" wide
6'0" deep
1040 lhs.
117 VAC
60 Hz
20 amps | \$7052. | \$7052 Rotation of camera head 90 degrees. Special 60mm Zeiss lens available. Automatic 2-40 exp. available. | | | 52-2061 | <u>105ຫາ-350</u>
(optíonal
35ໝາ-100') | 105mm.
4:1 to
11:1
(optional
35mm
12:1 to
36:1) | ۷p to
۱۹۳۸ x66 | • | 11'2" high
9'5" wide
7'4" deep
1735 lbs.
115 VAC
60 Hz
20 amps | 5
12,95G | Projects images. Magazines are inter- changeable. Automatic-focusing point light source. Motor-driven filters. | | ЗМ Сопрапу | 3400 | 16mm film
cartridge | | | 60/min. | 12" high
26" wide
31" deep
115 VAC
50/60 Hz
3 amps | | Up to 3000 documents
on one cartridge. | TABLE 14 (cont.) Survey of Microform Camera Equipment (United States) | Special Features/
Accessories | Processor-camera. Cartridge capacity is 500 film cards. Resolution: 16:1113.6 lpmm, 24:1120 lpmm, 30:1135 lpmm. | Processor-camera. Positive film cards. Adapts to turret mounted lenses for various reductions. Cartridge capacity is 500 film cards. | Processor-camera.
Çartridge capacity
of 500 cards. | |----------------------------------|---|--|--| | Base
Price | | | | | Dimensions/ | 78" high
90" wide
44" deep
550 1bs.
100-130 VAC
60 Hz
15 amps | 32" high
39" wide
30" deep
450 lbs.
110-130 VAC
50 Hz
15 amps | 61" high
72" wide
34" deep
600 lbs.
100-130 VAC
6 Hz
15 amps | | Operating
Speed | up t. 40 sec. 36"x48" for compl. (A to E card size draw.) | 50 seconds
for compl.
card | 40 sec.
for compl.
card | | Input | up to
36"x48"
(A to E
size
draw.) | up to
19"x26" | up to
24"x36"
(A to D
size
engin.
drawing) | | Reduct.
Ratio | 16:1
24:1
36:1 | | | | Type of Film | | | cartridge | | Model No. | 2000 E | 2000/P | 2000
Series II | | Manufacturer | 3M Company
(cont.) | | | STATES OF THE PROPERTY TABLE 15 Survey of Microform Developer/Processor Equipment (United States) | Special Features/
Accessories | Darkroom is not required
for processing film.
Audible signal for film | 1 | Fiche and jacket
processor. | Darkroom is not required
for processing film. | Darkroom is not required for processing film. | |----------------------------------|---|------------------------------|------------------------------------|--|---| | Base
Price | | | | | | | Dimensions/
Weight/
Power | 53" high
65" wide
25" deep
450 lbs. | 110
60
18 | 21" high
145g" wide | 75 1bs.
110-115 VAC
60 Hz
6 amps | 55%" high
8'10" wide
21" deep
915 1bs.;
wet 1320 1bs
110-115 VAC
60 Hz
25 amps | | Process.
Speed | 18 ft/min.
archival
film
30 f.p.m. | for non-
archival
film | 9-19 ft/
sec. | aujusts
for var.
speeds
of film | 0-100
f.p.m. | | Film
Capacity | 400' feed
Spool and
1000' take-
up reel | | (1) 3"x5"
4½"x6" | 33/8×73/8"
(3)
51/6" x8" | 16mm:
2000' mag.
16/35mm:
1200' mag. | | Type of
Film | rand I | 16mm and
35mm | two sheets (1) 3"x5"
of 41/6"x6 | Xalvar
Kalvar
sʻmultan. | 16mm and
35 mm | | Model No. | SPECIALIST
I |
SPECIALIST
II | PROCESSOR | models for
diff. size
film) | LM-SM | | Manufacturer | Bell & Howell
Company | | | | CinTel Corp. | TABLE 15 (cont.) Survey of Microform Developer/Processor Equipment (United States) | Special Features/
Accessories | Darkroom is not required
for processing film. | Darkroom is required for processing film. | Darkroom is required for
processing film. | |----------------------------------|--|--|--| | Base
Price | | | | | Dimensions/
Weight/
Power | 554" high
10'6" wide
21" deep
1070 lbs.;
wet;
1675 lbs.
115/230 VAC
60 Hz | 55%" high
8'10" wide
21" deep
915 1bs.;
wet,
1320 1bs.
115/230 VAC
60 Hz
30 amps | 55½" high
10.6" wide
21" deep
1070 lbs.;
wet,
1675 lbs.
115/230 VAC
60 Hz | | Process.
Speed | 0-130
f.p.m. | 0-50
f.p.m. | 0-50
f.p.m. | | Film
Capacity | 16mm:
2000' mag.
16/35mm
1200' mag. | 500' long | 500' long | | Type of
Film | 16mm and
35rm | up to
105 กะก | up to
105 ուա | | Model No. | ГМ-ХМ | LM-70/
105SN/P | LM-70/
105 XM | | Manufacturer | CinTel Corp.
(cont.) | | | TABLE 15 (cont.) Survey of Microform Developer/Processor Equipment (United States) | Special Features/
Accessories | Darkroom is not required for processing film. | Darkroom is not required for processing film. | Process two films (16mm) simultaneously with accessories. Darkroom is not required for processing film. | |----------------------------------|--|--|--| | Base
Price | | | \$3224.20
w/o
processing
rack | | Dimensions/
Weight/
Power | 59" high
8' wide
21" deep
840 lbs.;
wet,1130 lbs.
715/230 VAC
60 Hz
25 amps | 59" high
9'8" wide
21" deep
990 Tbs.;
wet,1480 lbs.
115/230 VAC
60 Hz
30 amps | 28½" high
25" wide
12½" deep
1ess than
100 lbs.
117 VAC
60 Hz
15 amps | | Process.
Speed | 0-100
f.p.m. | 0-100
f.p.m. | 5 f.p.m. | | Film
Capacity | 16mm:
2000' mag.
16/35mm:
1200' mag. | 16mm:
2000' mag.
16/35mm
1200' mag. | 2-100 ft. | | Type of
Film | 16mm and
35mm | 16mm and
35mm | 16nm and
35mm | | Model No. | LM-SN/P | LM-XN/P | PROSTAR
DVR | | Manufacturer | CinTel Corp.
(cont.) | | Eastman Kodak
Company | TABLE 15 (cont.) Survey of Microform Developer/Processor Equipment (United States) | Special Features/
Accessories | Extra film chambers
available. | Universal and dual mag. available to expand output Process simultaneously 4 rolls of 16mm film or 3 rolls of 35mm. Darkroom not required. | Darkroom not required. | |----------------------------------|--|---|---| | Base
Price | \$15.046.00 | | \$2546.00 | | Dimensions/
Weight/
Power | .470 lbs.
117 VAC
60 Hz
30 amps | | 5' high
64" wide
21" deep
160 lbs.
115 VAC
60 Hz | | Process.
Speed | 36 f.р.m. | | 5 f.p.m. | | Film
Capacity | 1200 ft. | | up to
350 ft. | | Type of
Film | 16тп | 16mm to
105mm | up to
105mm | | Model No. | VISCOMAT
Model 36 | 335
Transflo | 52-2049 | | Manufacturer | Eastman Kodak
Company
(cont.) | Itek Business
Products | Keuffel & Esser
Company | TABLE 16 Survey of Microform Duplicator Equipment (United States) | Base Special Features/
Price Accessories | Precision 400 watt metal halide
QVC, ultraviolet lamp system.
Variable exposure control. | \$1620.00 Can be used as a white printer. | approx. Paper prints available in \$1400.00 positive to negative; negative to positive to positive; and negative to negative. Sizes are 11"x8½" or 11"x14". | |---|--|---|---| | Dimensions/ Ba
Weight/ Pr | 16" high
21" wide
23" deep
90 1bs.
110-115 VAC
60 Hz | 11 ½" high
27" wide
15¾" deep
99 1bs.
220 vAC
50 Hz | 33" high app
22" wide
22" deep
115 VAC
50/60 Hz
5 amps | | Duplicat.
Rate | 500 sheets
of Kalvar
or Diazo
per hour | 5-16 f.p.m
average
speed with
diazo mat.
5 f.p.m. | 10 sec./
print | | Input
Type of
Film | microfiche
and
jackets
up to
5"x8" | microfiche aperture cards strip-to-strip roll-strip paper print up to 11" | Kalvar
microfilm | | Model No. | PRINTER | 909
(Fortable) | 3500 | | Manufacturer | Bell & Howell
Company | Blu-Ray, Inc. | DatagraphiX | TABLE 16 (cont.) Survey of Microform Duplicator Equipment (United States) | Special Features/
Accessories | No darkroom required.
Table top machine. | Floor mounted machine.
No darkroom required. | | | |----------------------------------|---|---|--|-------------------------------------| | Base
Price | \$6580.00 | \$18,800. | \$3450.00
w/o
vacuum
heads | \$6650.00
w/o
vacuum
heads | | Dimensions/
Weight/
Power | 19" high
34" wide
23" deep
145 lbs.
115 VAC
60 Hz
20 amps | 70" high
44" wide
27" deep
1100 1bs.
220 volts
3-phase
60 Hz
20 amps | 29%," high
40%" wide
20% deep
305 lbs.
118 VAC
oo Hz
15 amps | | | Ouplicat.
Rate | 10-60
f.p.m. | 10-60
f.p.m. | up to
320 f.p.m. | up to
320 f.p.m. | | Input
Type of
Film | 16mm or
35mm roll | 105mm film
up to 250՝ | l6mm and
35mm film | 16mm to
105mm film | | Model No. | 92 | 96 | 3000 | 1050 | | Manufacturer | DatagraphiX
(cont.) | | Extek Micro-systems, Inc. | | TABLE 16 (cont.) Survey of Microform Duplicator Equipment (United States) | | | | | | | |----------------------------------|---|---|---|---|--| | Special Features/
Accessories | Merging duplicator.
Sequence density programmer.
Automatic counter.
Darkroom required. | Can be converted with color filters to make contact color prints. | OP-61 automatic repeater, up to 99 cards automatically. OP-60 manual operation. | Automatically makes from
1-99 copies of a single card. | 400 watt lamp.
Diazo method.
Darkroom is not required for
duplicating film. | | Base
Price | \$5695.00 | | | | \$3145.50 | | Dimensions/
Weight/
Power | 30" high
41" wide
21" deep
200 1bs.
110-130 VAC
50/60 Hz | | | | 27" high
42½" wide
24¾, deep
230 lbs.
115 VAC
60 Hz | | Duplicat.
Rate | up to
300 f.p.m. | | | 750/hr. | 30 f.p.m. | | Input
Type of
Film | silver
film
16mm and
35mm | i6mm,
35mm,and
70mm film | film card | film card | 15mm or
35mm
up to
1000' roll | | Model No. | 1635 | 303 | 0P-60/61 | 06-30 | FP-2 | | Manufacturer | Extek Micro-
systems, Inc.
(cont.) | Itek Business
Products | | | GAF Corporation | The second concernment of the continue TABLE 16 (cont.) Survey of Microform Duplicator Equipment (United States) 是一个时间,我们是一个时间,我们是不是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们也是一个时间,我们是一个时间 一个时间,一个时间,我们是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间 | e Special Features/
ce Accessories | Exposes, develops, and rewinds film in one continuous cycle. Diazo method. Darkroom is not required. | Exposes, develops, and rewinds film in one continuous cycle. Diazo method. Darkroom is not required. | Semi-automatic card-to-card or roll-to-card copying. | Semi-automatic card-to-cardor or roll-to-card copying. | |---------------------------------------|--|--|---|---| | Base
Price | \$11,995. | \$16,127. | | | | Dimensions/
Weight/
Power | 65" high
59" wide
28" deep
840 lbs.
110/120 VAC
35-40 amps | 73" high
41" wide
28" deep
950 lbs.
220 VAC
35-40 amps | 38" high
30" wide
15" dcep
80 1bs.
115 VAC
60 Hz
5 amps | 48" high
30" wide
18" deep
110 1bs
115 VAC
50 Hz | | Duplicat.
Rate | 50 f.p.m. | 150 f.p.m. | 8 aperture
cards/min. | 8 aperture
cards/min. | | Input
Type of
Film | 16mm or
35mm
1000' roll | 16mm
or
35mm
1000' roll | 16mm or
35mm
film card | 16mm or
35mm
film card | | Model No. | CBS
Model 303 | CBS
Model 1500 | Esser MICROMASTER
52-9954 | 52-9965 | | Manufacturer | GAF Corporation
(cont.) | | Keuffel & Esser
Company | | TABLE 16 (cont.) Survey of Microform Duplicator Equipment (United States) | Manufacturer | Model No. | input
Type of
Film | Duplicat.
Rate | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |---------------------------------------|-----------------------------------|---|---------------------------|---|---------------|--| | Keuffel å Esser
Company
(cont.) | Morgan 37 | 105mm film
converts
to 35mm
up to
350' long | | 36" high
69" wide
34" deep
1200 lbs.
115 VAC
25 amps | | Reduction ratio, approximately
3.6%; between 4x and 1.5x,
preset at factory. | | м Company | DUPLI-
PRINTER | aperture
cards
(silver
diazo or
thermal) | 8 cards/
min. | 30" high
38" wide
15" deep
82 lbs.
115 VAC
60 Hz
5 amps | | Negative-to-negative or
positive-to-positive printing.
Adjustable exposure range
control. | | | 333
(Dry
Silver
Printer) | aperture
cards | up to
8 cards/
min. | 294" high
61" wide
29" deep
350 lbs.
105-125 VAC
60 Hz | | Paper prints onlyup to
25 copies of one card auto-
matically.
Up to 18"x24" print. | TABLE 16 (cont.) Survey of Microform Duplicator Equipment (United States) | Manufacturer | Nodel No. | Input
Type of
Film | Duplicat.
Rate | Dimensions/
Weight/
Power | Sase
Price | Special Features/
Accessories | |---------------------------|--------------------|--------------------------------|----------------------------------|---|---------------|----------------------------------| | NB Jackets
Corporation | 404
(Printer) | | | 16" high
21" wide
23" deep
90 Tbs.
110-115 VAC
60 Hz
6 amps | | | | | 404
(Processor) | 3"x5"
41 _{16"} x6" | 400 Kalvar
or Diazo
sheets | 21" high
145 ₈ " wide
19" deep | | | | | 407
(Processor) | 33g"x73g" | per hour
9 sec/cycle | 75 lbs.
110-115 VAC
60 Hz
6 amps | | | | | 408
(Processor) | 5½"× 8" | | | | | | Teledyne
Post | 610 | aperture
cards | 8/min. | | | | TABLE 17 Survey of Microform Reader Equipment (Foreign Manufacturers) | Manufacturer | Model No. | Screen
Size/
Brightness | Magnif. | Film Size
Accepted | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |----------------------------------|---------------------|--|---------------|---|--|---------------|---| | Fuji'Phơto Film
Company, Ltď. | R 812
(Portable) | 21x29.7 cm
12 volts
50 watt
Halogen
lamp | 7.5x
17.7x | aperture
cards | 18" high
16%" wide
13" deep
12 kg.
100 VAC
70 watts | | Roll film adapter available
for 35mm film. | | | R 1824 | 18"x24" 24 volts 120 watt point filament | 15× | 35mm film
100' roll
aperture
cards
strip film | 30%" high
29" wide
26%, deep
200 watts
maximum | | | | | RFP 1
(Portable) | 3 <u>0х30 с</u> т | 20× | microfiche
maximum
105x15Umm
aperture
cards | 19.7" high
15" wide
17" deep
in use
8.5 kg.
approx.
19 1bs.
100 VAC
50/60 Hz | | | A. The construction of the contract con TABLE 17 (cont.) Survey of Microform Reader Equipment (Foreign Manufacturers) | Special Features/
Accessories | | | | | |----------------------------------|--|--|--|--| | Base | | | | | | Dimensions/
Weight/
Power | 41 cm high
34 cm wide
48 cm deep
26 1bs.
220/110 V
50/60 Hz | 50 cm high
46 cm wide
50 cm deep
31 lbs.
220/110 V
50/60 Hz | 62 cm high
64 cm wide
60 cm deep
42 lbs.
220/110 V
50/60 Hz | 89 cm high
89 cm wide
73 cm deep
64 lbs.
220/110 V
50/60 Hz | | Film Size
Accepted | aperture
cards
microfiche
roll film | aperture
cards
microfiche
roll film | aperture
cards
microfiche
roll film | aperture
cards
microfiche
roll film | | Magnif. | 7.4x
partial
detuil
14.8x | 10.5x
partial
detail
21x | 14.8x
partial
detail
29.7x | s partial t detail 42x | | Screen
Size/
Brightness | 8½"x12"
24 volts
150 watt
halogen
lamp | 12½"x17"
(A 3)
24 volts
150 watt
halogen
lamp | 17"x24"
(A 2)
24 volts
150 watt
halogen
lamp | 24"x333"
24 volts
150 watt
halogen
lamp | | Model No. | M.K 4 | MLK 3 | MLK 2 | MLK 1 | | Manufacturer | MICROBOX | | | | TABLE 17 (cont.) Survey of Microform Reader Equipment (Foreign Manufacturers) | Special Features/
Accessories | | | | |----------------------------------|---|--|---| | Base
Price | approx.
\$118.00
each
?ens
\$22.00 | approx.
\$410.00
incl.
lens | approx.
\$225.00
incl.
lens | | Dimensions/
Weight/
Pcwer | 36 cm high
27 cm wide
10 cm deep
6.2 kg.
220/110 V | | | | Film Size
Accepted | 16mm and
35mm film
microfiche
jackets
aperture
cards
5x5 slides | | 16mm and
35mm film
microfiche
jackets
aperture
cards
5x5 slides | | Magnif. | 17.5mm for 16mm film 22.5mm for 37.5mm for 6x.5mm for 37.5mm for and slides | 14.8x
21x
29.7x | | | Screen
Size/
Brightness | 25x34 cm
12 volts
50 watt
quarter
sized
halogen
lamp | 42x59.4cm
12 volts
100 watt
halogen
lamp | 42x59.4cm
(A 2
format
approx.
17"x24") | | Model No. | UNIVERSAL
P 1
(Portable) | ب
د | p 4 | | Manufacturer | Proti Micro
Reader Corp. | | | TABLE 17 (cont.) 在此次是是是是是是一个,是是是一个人的是是是一个人的是是是是一个人的是是是一个人的是一个人的是是是一个人的是是是一个人的是是是一个人的是是一个人的是是一个人的是是 Survey of Microform Reader Equipment (Foreign Manufacturers) | Special Features/
Accessories | Image rotation upon request.
Up to three lenses in | • | Image rotation upon request. Up to three lenses | יון נחירפני | Available with hard copy facility with build-in "repro bort" processor. Special lenses: 16x, 24x, and 35x. | | | |----------------------------------|---|------------------------------------|---|------------------------------------|--|--|------------------------------------| | Base
Price | | | | | | | | | Dimensions/
Weight/
Power | 59 cm high
49 cm wide
76 cm deep | | 71 cm high
66 cm wide
76 cm deep | 16 kg.
220 volts
50 Hz | 142 cm high 74 cm wide 109 cm deep 95 kg. | 63 cm high
64 cm wide
59 cm deep | 11 kg.
110/220 V
50 Hz | | Film Size
Accepted | K
aperture
cards | R
Iomm and
35mm rcll
film | K
aperture
cards | R
16mm and
35mm roll
film | 16mm and
35mm film
aperture
cards
microfiche | K
aperture
cards | R
16mm and
35mm roll
film | | Magnif. | 10.5x
14.8x
21x | 26x
29.7x | 10.5x
14.8x
21x | 26×
29.7× | 14.8x
21x
29.7x | 14.8x | | | Screen
Size/
Brightness | 31x44 cm
(A 3)
12 volts | 100 watt
halogen
lamp | 44x60.5cm
(A 2)
12 volts | 100 watt
halogen
lamp | 44x60 cm
halogen | 42x59.4 cm
12 volts
100 watt | halogen
lamp | | Model No. | 445K | 445R | 605K | 605R | SYSTEMATIC
600 | 610K | 610R | | Manufacturer | Heinz Zeutschel
Gerätebau KG | | | | | | | TABLE 17 (cont.) Survey of Microform Reader Equipment (Foreign Manufacturers) | <u></u> | | | | | T | |----------------------------------|---------------------------------|--|---|--|--| | Special Features/
Accessories | | | Special lenses: 18x, 23x, and 40x. | Roll film attachment
avzilable.
Screen slants 30 degrees. | Roll film attachment
available. | | Base
Price | | | | | | | Oimensions/
Weight/
Power | 51 cm high
47 cm wide | 49 cm deep
11 kg.
110/220 V
50 Hz | 56 cm high
40 cm wide
65 cm deep
27 kg.
110/220 V | 60 cm high
50 cm wide
68 cm deep
62 kg.
220 volts
50 Hz | 75 cm high
50 cm wide
72 cm deep
75 kg.
220 volts
50 Hz | | Film Size
Accepted | K
microfiche | R
16mm and
35mm roll
film | aperture
cards
microfiche | aperture
cards
microfiche | aperture
cards
microfiche | | Magn1f. | 10.5x | | 26× | 8x
10x
13x
20x | 6.5-8.7x
8.7-11.2x
10.4-
13.5x | | Screen
Size/
Brightness | 29.7x42 cm
12 volts | halogen
lamp | 34x30
cm
quartz
iodine
lamp | 31x31 cm
12 volts
100 watt
lamp | 31x31 cm
12 volts
100 watt
lamp | | Model No. | 450K | 450R | SYSTEMATIC
340 | MP 2 | MP 2
VARIO | | Manufacturer | Heinz Zeutschel
Gerätebau KG | (cont.) | | | | TABLE 17 (cont.) Survey of Microform Reader Equipment (Foreign Manufacturers) | Special Features/
Accessories | Other lenses upon request.
Table top viewer. | |----------------------------------|--| | Base
Price | | | Dimensions/
Weight/
Power | 93 cm high
97 cm wide
52 cm deep
87 kg.
110/220 V
115/240 V | | Film Size
Accepted | 16mm film
35mm film
70mm film | | Magnif. | 10× | | Screen
Size/
Brightness | 32x90 cm
150 and
250 watt
quartz
iodine
lamp | | Model No. | MP 3 | | Manufacturer | Heinz Zeutschel
Gerätebau KG
(cont.) | TABLE 18 是一个人,我们是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是 第一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也 Survey of Microform Reader-Printer Equipment (Foreign Manufacturers) | Special Features/
Accessories | Rotation of image 360°
Copies made in 12 sec.
Screen angled 8°. | | | Ideal for engineering
drawings. | Image rotation 360°.
Exposure fully automatic; copies in 10 seconds.
Interchangeable lenses. | |-------------------------------------|---|-----------------------------|-------------------|--|--| | Base
Price | | | · | | | | Dimensions/
Weight/
Power | 33½" high
23¼" wide
20½" deep
68 kg | 100 VAC
50/60 Hz | | | 78 cm high 64 cm wide 52 cm deep 70 kg. 100 volts 300 watts | | Printing
Process/
Output Copy | paper print
8"x11" | | | | paper print
21x29.7 cm | | Magnif. Accepted | | aperture
cards
micro- | 16mm
cartridge | | 16mm and
35mm roll
film
micro-
fiche
jackets
aperture
cards | | Magnif. | 6.7x
8.7x
12.5x | 20x
23x
26.4x | | e de la companya l | 6.7×
8.7×
12.5×
13.8×
20×
23×
26.4× | | Screen
Size/
Brightness | 834,"x1134,"
24 volts
150 watt | halogen
lamp | | 18"×24" | 30x30 cm
24 volts
150 watt
halogen
lamp | | Model No. | Q 4 A | Q 4 AC | | Q 21E | Q 4 AS | | Manufacturer | Fuji Photo Film
Company, Ltd. | | | | | ANNO CONTROL C TABLE 18 (cont.) 是,这个人,我们是一个人,我们是一个人,我们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一 Survey of Microform Reader-Printer Equipment (Foreign Manufacturers) | Special Features/
Accessories | Print in 15 sec.
Prints 120/hr.
Positive to positive
prints also. | No darkroom raquired
Prints in less than
1 minute.
Positive to positive
prints also. | Interchangeable
lenses.
Automatic exposure/
copies 200/hr.
Other lenses upon
request. | |-------------------------------------|--|--|--| | Base
Price | | \$600.00 | approx.
\$240.00 | | Dimensions/
Weight/
Power | 152 cm high
210 cm wide
94 cm deep
550 lbs.
220 volts
50 Hz
2200 watts | | 1 | | Printing
Process/
Output Copy | electro-
static proc.
on zinc
oxide paper
same size
as view or
enlarged
(A2,3, & 4) | paper prints
21,754.7 cm
(A 4)
(A 3)
(A 3) | paper prints 75 cm high approx. 97 cm wide 30x44 cm 117 cm deep 150 kg. 110/220 V 50 Hz | | Magnif. Accepted | aperture
cards
film
strips
roll
film | 16mm and
35mm film
micro-
fiche
aperture
cards
\$1ides | roll film
aperture
cards
micro-
fiche | | Magnif. | 14.8x
10.5x
7.4x
14.8x | | 10.5x
14.8x
18x
21x
27x
29.7x
32x
38x | | Screen
Size/
Brightness | 17"x24"
15 volts
150 watt
haloqen
lamp | | 31x44 cm
halogen
lamp | | Model No. | RP 234 | DALCO
A 3 | RS 3 | | Manufacturer | MICROBOX | Proti Micro
Read&r Corp. | Heinz Zeutschel
Gerätebau KG | TABLE 18 (cont.) Survey of Microform Reader-Printer Equipment (Foreign Manufacturers) 的是是特殊的,我们是不是是不是不是不是不是不是不是不是不是不是不是一个,我们也是不是一个,我们也是一个一个,我们也是一个一个,我们也是一个一个一个一个一个一个一 Interchangeable film transport system. Interchangeable film Copies in 10-40 sec. Copies in 10-40 sec. Special Features/ Accessories transport system. Base Price paper prints 142 cm high from A2 to 160 cm wide to A6 109 cm deep 175 kg. 71 cm high 56 cm wide 50 cm deep 52.5 kg. 110/220 v Oimensions/ Weight/ Power paper print up to A3 Printing Process/ Output Copy 35mm film aperture 16mm and 35mm roll Magnif. | Accepted aperture 16mm and micro-fiche jackets fiche microcards cards fi]m 8.5x 10.5x 11x 114.8x 18x 26x 26x 40x 14.8x 16x 21x 24x 29.7x 35x 29.7x42 cm halogen lamp Size/ Brightness 45x60 cm halogen lamp Screen Model No. 쏬 2 Heinz Zeutschel Gerätebau KG Manufacturer (cont.) To be seen to a consultant three transmissions to be considered to the constitution of TABLE 19 Survey of Microform Camera Equipment (Foreign Manufacturers) 这一种,这个是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我 第二个人,是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, | Manufacturer | Model No. | Type of
Film | Reduct.
Ratio | Input | Operating
Speed | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |------------------------------|-------------|------------------------|---|---|---|--|---------------|--| | Agfa-Gevaert | COPEX D4000 | 16mm | 23:1
simplex
34:1
45:1
simplex,
duo, and | up to
84"×11 ³ 4"
(A4) | 130 f.p.m | 16" high
25" wide
24" deep
88 1bs.
220 volts
50 Hz
600 watts | | Two rolls simult.;
interchangeable film
units.
Exposure: manual or
automatic. | | Cameronics, Ltd. | M.F. 10 | micro-
fiche | 20× | | 12 compl.
fiche/hr.
(60 doc.
on each
fiche) | | | Resolution: 140 lpmm;
maximum 180 lpmm at
20x.
Exposure: automatic.
No darkroom required. | | Fuji Photo
Film Co., Ltd. | ٦ 2 | 35mm film
100' long | film 12x
long to 30x
(auto.) | up to
37.8"
x53.1" | 39 frames/
min. | 8'11" high
10'5" wide
6'1" long
100-120 V | | Special attachment for 16mm film. Resolution: 120 lpmm at 30x. Exposure: automatic. Lens: M56mm f/7.3. | | | δ
Σ | 35mm film
100' long | film 4x
long to 21x
(auto.) | up to
26.4"x
37.2" | 46 frames/
min. | 103.5" high
104" wide
58.2" long
270 kg.
100-120 V | | Special attachment
for l6mm film.
Exposure: automatic.
Lens: M77mm f/8 fix. | The contract of o TABLE 19 (cont.) Survey of Microform Camera Equipment (Forcign Manufacturers) | Input Operating Dimensions/Base Special Features/Copy Speed Power Price Accessories | 17.6"x 46 frames/ 56.8" high Exposure: semi-auto. 24.8" min. 59.1" wide Lens: M77mm f/8 fix. 72 kg. Special attachment. 100-120 V for 16mm film. | 30x 80x 80x120cm 375 cm high 170 cm deer 34x 840 lbs. 136cm 3.5 Kw | 67.2x 225 cm high 250 cm wide 94.5cm 250 cm wide 145 cm deep 460 1bs. 220 V 50 Hz | 67.2 x 230 cm high 235 cm wide 94.5cm 235 cm wide 130 cm deep 550 lbs. 220 volts 50 Hz |
---|--|--|---|--| | Reduct.
Ratio | 5x
to 14x
(manual) | 6-30x
or
6-34x
(auto) | 7-21× | 6-21× | | Type of
Filtn | 35mm | 35mm
100' long | 35mm
100' Tong
cassette | 35mm
100' long
cassette | | Model No. | S S | MBS-0 | MB-1 | MBS-1 | | Manufacturer | Fuji Photo
Film Co., Ltd.
(cont.) | MICROBOX | | | STATES OF THE PROPERTY AND ADDRESS OF THE PROPERTY PROP TABLE 19 (cont.) Survey of Microform Camera Equipment (Foreign Manufacturers) 是一个时间,他们就是一个时间,他们也是一个时间,他们也是一个时间,他们也是一个时间,他们也是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 | e Special Features/
ce Accessories | Other reduction
ratios available. | · | |---------------------------------------|---|---| | /Base
Price | | | | Dimensions/
Weight/
Power | 90 x 180cm
120 kg.
220 volts
50 Hz
1600 watts | 90 x 180cm
120 kg.
220 volts
50 Hz
1600 watts | | Operating
Speed | 900/hr. | 900/hr. | | Input
Copy | Al
(D size) | A2
(C size) | | Reduct.
Ratio | 14.8x
21x | 14.8 | | Type of
Film | 35mm | 35тт | | Model No. | SYSTEMATIC
111 | SYSTEMATIC
112 | | Manufacturer | Heinz Zeutschel
Gerätebau KG
(cont.) | | AND THE SECOND STATES OF S TABLE 20 是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们 Survey of Microform Developer/Processor Equipment (Foreign Manufacturers) | Special Features/
Accessories | | Reduction ratios: 16x to 24x.automatically Exposure: automatic. Input copy: 38.4 x 55.2 cm. | No darkroom required. | No darkroom required. | |----------------------------------|--|---|--|--| | Base | | | | | | Dimensions/
Weight/
Power | 44" high
47.6" wide
14.6" long
240 lbs.
100 VAC
50 or 60 Hz | 66" high
55" wide
35½" deep
100/240 V | 50 cm high
70 cm wide
23 cm deep
9 kg.
220 volts
0.5 Kw | 62.5 cm high
85.5 cm wide
32.5 cm deep
40 kg. | | Process.
Speed | 80cm/min.
45 min./
100' roll | (filming) 30 frames /min. (110 sec. w.titles) (process) 6 min. | | 60meter/hr | | Film
Capacity | 100' roll | | 5 strips
10 strips | cassettes | | Type of
Film | 16mm and
35mm
100' Tong | 105mm x
148.75mm
(sheet
film) | 35mm film
strips | roll film
strip
film
16mm and
35mm | | Model No. | AUTO-
PROCESSOR 2 | S 105 B 105mm x 148.75mm (Camera/Processor) (sheet film) | T 35/5
T 35/10 | R 3516 K | | Manufacturer | Fuji Photo
Film Co., Ltd. | - | місковох | | TABLE 21 Survey of Microform Duplicator Equipment (Foreign Manufacturers) | Manufacturers | Model No. | Input
Type of
Film | Dupli at.
Rat | Dimensions/
Weight/
Power | Base
Price | Special Features/
Accessories | |---------------------------------|----------------------|--|------------------|--|---------------|---| | Heinz Zeutschel
Gerätebau KG | SYSTEMATIC
100 | 16mm and
35mm film
100' roll
magazine | | 45.4 cm high
49 cm wide
29.2 cm deep
22 kg.
110/220 V | | Automatic feeding.
Adjustable illumination control.
No darkroom required. | | | SYSTEMATIC
100L | 16mm and
35mm film
100 roll
magazine | | 45.4 cm high
61.8 cm wide
29.2 cm deep
30 kg.
110/220 V
50 Hz | | Visual control from original
film.
Automatic feed.
Adjustable illumination
control. | | SYSTEMATIC
100 SA | SYSTEMATIC
100 SA | 16mm and
35mm film
100' roll
magazine | | 45.4 cm high 61.8 cm wide 29.2 cm deep 39 kg. 110/220 V 50 Hz | | Provides visual control with selection capability to select sections of original film, Adjustable illumination control. | ## LIST OF UNITED STATES MANUFACTURERS BELL & HOWELL COMPANY Micro Data Division 6800 McCormick Road Chicago, Ill. 60645 BLU-RAY, INC. Essex, Connecticut 06426 CINTEL CORPORATION 11801 West Olympic Blvd. Los Angeles, Calif. 90064 DASA CORPORATION 15 Stevens Street Andover, Massachusetts 01810 DATAGRAPHIX P.O. Box 2449 San Diego, Calif. 92112 EUGENE DIETZGEN COMPANY 2425 North Sheffield Avenue Chicago, Illinois 60614 DU KANE CORPORATION 103 North 11th Street St. Charles, Illinois 60174 EASTMAN KGDAK COMPANY 919 Culver Road Rochester, N.Y. 14609 EXTEK MICROSYSTEMS, INC. 15424 Cabrito Road Van Nuys, Calif. 91406 ## LIST OF UNITED STATES MANUFACTURERS (ccnt.) GAF CORPORATION 14C West 51st Street New York, N.Y. 10020 ITEK BUSINESS PRODUCTS 1001 Jefferson Road Rochester, N.Y. 14603 KEUFFEL & ESSER COMPANY 20 Whippany Road Morristown, New Jersey 07960 3M COMPANY Microfilm Products Division St. Paul, Minnesota 55101 MICRO IMAGE CORPORATION 11436 Sorrento Valley Road San Diego, Calif. 92121 THE MOSLER SAFE COMPANY Information Systems Division Hamilton, Thio 45012 NB JACKETS CORPORATION 54-18 - 37th Avenue Woodside, New York 11377 THE NATIONAL CASH REGISTER COMPANY Industrial Products 3109 Valleywood Drive Dayton, Ohio 45429 RANDOMATIC DATA SYSTEMS, INC. 344 West State Street Trenton, New Jersey 08618 ## LIST OF UNITED STATES MANUFACTURERS (cont.) SANDERS-DIEBOLD, INC. Daniel Webster Highway Nashua, New Hampshire 03060 THE TAYLOR-MERCHANT CORPORATION 25 West 45th Street New York, N.Y. 10036 TELEDYNE POST Frederick Post Company P. O. Box 803 Chicago, Ill. 60690 VUE TECH 422 Industrial Drive Maryland Heights, Missouri 63043 WASHINGTON SCIENTIFIC INDUSTRIES, INC. Long Lake, Minnesota 55356 TO SOLVE TO SOLVE AND SOLV ## LIST OF FOREIGN MANUFACTURERS Home Office Address U.S. Representatives AGFA-SEVAERT, INC. West Germany AGFA-GEVAERT, INC. 275 North Street Teterboro, New Jersey 07608 CAMERONIES, Ltd. Microform Division Athlon Road Alperton, London, England MICROBOX Dr. Welp GmbH & Co. P.O. Box 143 D-635 Bad Nauheim West Germany FUJI PHOTO FILM COMPANY, INC. 26-30 Nishiazabu Z-chome Minato-ku, Tokyo 106 Japan FUJI PHOTO FILM COMPANY, INC. 350 Fifth Avenue New York, N.Y. 10001 N.V. PROTI MICRO READER CORPORATION Stijn Buijsstraat 4a Postbox 110 Nijmegen, Holland ## Brightness and Resolution of Commercial Microform Readers Most sales and promotional literature obtained in the equipment survey contained no specific information on screen brightness or resolution. To obtain an estimate of what industry has to offer, we obtained the gracious cooperation of two manufacturers, Eastman Kodak Company and 3M Company, who permitted us to take measurements on a variety of their equipment. The purpose of taking the measurements was not to evaluate or compare these manufacturers but to determine the general range of screen brightness and resolution available in the marketplace. The equipment measured was demonstration gear, and while it was in good working condition, no special adjustments had been made. In some instances, performance might be improved through adjusting the optical system but company representatives agreed that the devices were representative in their present condition. Resolution was measured by inserting a Standard Air Force Tri-Bar pattern in the form of a 35mm, positive transparency into the reader and examining the pattern on the screen using an eye-loop (4x). CHANGE OF THE PROPERTY Brightness measures were made with an SEI photometer accurate to 9.1 log unit. The results are summarized in Table 22. It may be seen that resolution ranged from a low of 181 to a high of 456 lines/mm. Maximum screen brightness ranged from 15 to 90 ft-L and average screen brightness ranged from 9 to 56 ft-L. Overall, it would appear that the resolution of these systems is quite good and that the limiting factor would be the resolution of the input film and not the reader. TABLE 22 Sample Display Resolution and Screen Brightness of Microform Readers ## 3M Company | Model N | lo. | Resolution at
Center of Screen
(lines/mm) | Maximum Screen Erightness
and Average of Center and
four Corners (ft-L) | | | | | |--------------------|--|---|---|---------|--|--|--| | | | | Maximum | Average | | | | | | 100 M
film or flat format
uttachment) | 362 | 48 | 43 | | | | | Model 4
Reader- | 190 CT
Printer | 456 | 63 | 30 | | | | | | 100 CT
Screen) for
er printout work | 456 | 40 | 40 | | | | | | 500 FASTBACK Reader
ces 400 LR) | 362 | 50 | 46 | | | | | | 100 Page Search
Printer | 406 | 55 | 52 | | | | | | ive I
ost reader-printer
ords and fiche) | 228 | 15 | 9 | | | | | Model 2
Reader- | 200
-Printer | 228 | 48 | 45 | | | | TABLE 22 (cont.) # Sample Display Resolution and Screen Brightness of Microform Readers ## Eastman Kodak Company | Model No. | Resolution at
Center of Screen
(lines/nm) | and Average | Maximum Screen Brightness
and Average of Center and
four Corners (ft-L) | | | |---|---|-------------
---|--|--| | | | Maximum | Average | | | | MOTORMATIC
Reader-Printer | 300 | 75 | 56 | | | | STARMATIC, Model PVM | 286 | 90 | 53 | | | | LODESTAR PS 1K | 202 | 32 | 24 | | | | LODESTAR PEK 1
(used in Miracode System | 322 | 90 | 39 | | | | MAGNAPRINT Reader PE-1A (Multipurpose Reader) | 256 | 45 | 35 | | | | EASAMATIC PFCD (Fiche Reader) | 181 | 32 | 25 | | | Here the control of t Only one or two of these devices had brightness adjustments. Generally, the brightness adjustment is accomplished by changing voltage to the projection lamp in the form of one to three discrete steps. Most readers have no brightness adjustment whatever and most have little or no provision for glare shielding. Perhaps 80 percent of the readers examined used "no-glare" screens. The remainder had a polished surface which tended to image extraneous light sources. This can be distracting and may reduce legibility. ## Microform Retrieval Systems There are many different types of microform retrieval systems. They range from simple manual devices to highly sophisticated, computer operated systems. The systems may be categorized as manual, semi-automatic, and fully automatic. The four systems described below serve to illustrate the functions and range of capabilities available today in the microform industry. The examples were chosen to indicate the kinds of systems that exist and their inclusion is not to be construed as an endorsement in any form. ## Manual Systems At the most rudimentary level, information retrieval is strictly manual. The user maintains a file of film rolls, fiche, or aperture cards, and retrieves and refiles the data manually. Any of a hundred different readers may be used to display the information. ### Semi-automatic Retrieval Systems As defined here, semi-automatic refers to a system which may be accessed by means of an electronic or electromechnoical keyboard. By inputing the proper numbers or alphanumeric descriptors, the desired fiche or card is automatically selected and presented to the user for insertion into a viewer. This card or fiche is manually refiled after use. Randomatic. One system of this type is the "Randomatic" produced by Randomatic Data Systems, Inc., Trenton, New Jersey. As its name implies, access to the card file is random. There is no need to file cards in any order. Cards may be retrieved singly or in groups. The cards are coded by notching along the bottom edge. This is accomplished in a few seconds by merely placing the card in a built-in, electrically operated punch and indexing its identification. Cards include standard tab size $(3-1/4" \times 7-3/8"; 5" \times 8")$ and edge punched cards. Since the Randomatic does not employ any metal strips or attachments on the cards and since the notch coding is not in the reading field of key punched or magnetic cards, the system is compatible with most other card processing systems. The system is of modular construction. Each card tray holds up to 1500 cards (or fiche) and any number of trays may be operated from a single keyboard. The standard Randomatic coding consists of six characters, either alphanumeric or numeric. Up to one million codes are possible with complete distinction of selection. Systems range in size from small desk top models to large models about the size of an executive desk (see Figure 12). The equipment functions on 115 VAC, 60 cycle power. Prices range from \$2500 to \$14,375 depending on size. Additional features are available at extra cost. Elici State delicitation and the properties of the contract <u>Kodak Miracode System</u>. This system consists of a cartridge file, electronic keyboard and interrogation unit, and a Recordak Lodestar Reader-Printer (Model PEK, PEK-1). The cartridge is retrieved manually and inserted into the reader-printer. The system makes use of an optical code which is photographed on the film adjacent to the document images. One or more keyboards may be required 是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们 Randomatic Data Systems, Inc., systems range from small desk top models to large models about the size of an executive desk. Figure 12. depending upon the desired depth of search capability. In addition to searching for and displaying requested images, the system will automatically scan the entire roll of film and count the number of items which correspond to one or more descriptors or classes of data. In this system, as contrasted to the 3M Page Search below, the optical coding requires film space. Therefore, as the depth of coding is increased there is less space for document images. Since both of these systems require manual retrieval and insertion of the cartridge, their relative advantage depends, in part, upon how much search capability one desires as opposed to document image capacity per cartridge. 3M Company, Model 400 Page Search Reader-Printer. This unit is shown in Figure 13. It accepts film (roll) cartridges which are manually retrieved from a file and inserted into the machine. Electronic logic circuitry responds to blip-coded 16mm film and will find and display any one of up to 10,000 images in a few seconds. To have a document image displayed and/or printed, one need only enter the proper code number on the keyboard provided. Dimensions of the unit are: height, 28.5"; width, 17.5"; and depth 22.75". Weight is approximately 140 lbs. It operates on 90-130 volts, 10 amps, single phase, 60 cycle power. ## Fully Automatic Systems A fully automatic system is considered one in which the storage element (cartridge, cassette, etc.) is automatically retrieved and from the element, the desired document image is displayed and printed on request. THITOCH ATTENDATED PROTECT PRO Mosler 410. A simplified flow diagram of the Mosler 410 Information System is shown in Figure 14. As may be seen, the system features keyboard access to a central file of microfiche and/or aperture card cartridges. In Figure 13. 3M Company, Model 400 Page Search Reader-Printer. Simplified flow diagram of the Mosler 410 Information System. Figure i4. HELO ARTSHAM TONDER OF PROCEEDING AND ASSESSMENT ASSESSMENT OF PROCEEDING AND ASSESSMENT OF PROCEEDING PROCEDING response to a keyboard entry, the proper cartridge is automatically retrieved from its storage module and transferred to a card/fiche selector unit. The card is selected and presented to a video camera. The image is displayed on a remote television monitor. A video printer will produce a copy of the image on request of the user. Alternatively, the system will deliver to the control console an individual card/fiche or an entire cartridge for updating or other purposes. A card punch unit is provided as part of the system for file maintenance. A detailed description of this system is beyond the scope of this report. However, several additional factors may be noted. The Mosler 410, in its various configurations, automatically stores, retrieves, duplicates, transmits, and copies alphanumerics, text, and graphics. Any document in the system can be retrieved in less than ten seconds, and several users may have simultaneous access to different documents. Up to 200,000 cards may be stored in and retrieved from a 410 storage module. Since microfilm is the primary method of preparing documents for infiling, a single storage unit may contain from 200,000 to 11,000,000 documents (depending on reduction ratio and document size) on 3-1/4" x 7-3/8" aperture cards on microfiche. As many as five storage modules can be operated under a unified system under common control. The system accommodates existing standard aperture cards, and these cards may be freely intermixed with microfiche within the information store. Requests may be entered into the system from keyboards either in the file area or remote from it, and may communicate with the system either directly or through any of a number of third generation computer systems. Once infiled into a 410 system, all handling of the cards is entirely automatic. The cards are held secure within the system, and are made physically available only to file-maintenance operators through controlled access stations for add, purge, and update functions. Information from these secure cards, however, is made freely available to information users either as high-resolution paper or microfilm copies, or as remote television displays. Depending upon its configuration, system cost ranges from \$100,000 to \$200,000. <u>Sanders-Diebold, Inc.</u> This company also manufactures an automatic retrieval system employing video dissemination. ## Computer Output Microfilm (COM) Systems Modern technology makes it possible to convert computer output (online or via tapes) to microform images. This function frees the computer from printing press jobs and outputs the data in the easily handleable medium of microfilm. <u>DatagraphiX</u>, <u>Inc.</u> Figure 15 shows the basic components of a COM system. Computer output is fed directly (or via tapes) into a micromatic recorder for photographing. Within the recorder, the digital information is displayed on a high resolution oscilloscope type display and photographed at a transfer rate of up to 120,000 characters per second. The film is then transferred to the next unit for processing. After processing, the film serves as a master for use in a hardcopy printer or can be duplicated for use in microfilm and fiche inquiry stations. IN THE RECOGNISH OF THE SECOND SHIP AS THE SECOND SHIP WAS SECOND SHIP HOW THE SECOND SHIP WAS Figure 15. Basic components of a COM system. ### PART III ### POTENTIAL SHIPBOARD APPLICATIONS The purpose of this section is to provide an overview of shipboard information processing activities with regard to potential applications for microform systems and equipment Two primary factors which determine the kind of information required by a ship are the type of ship and its
mission. Each ship has a general mission corresponding to the design of the ship and it has assigned primary and secondary mission areas. These mission areas are activities which fall within the ship's design capability. Table 23 illustrates the kind of information and its current format used by different types of ships. It may be noted that the majority of material is in the form of paper, either as bound publications or sheets. The volume of a given type of information on a ship at any time depends on the type of ship and its mission. For example, a small craft may have only a few maps aboard while a carrier may have as much as 16 tons of maps. Table 24 shows the distribution of information according to representative types of combatant ships and the major departments, divisions, or functions. The ship types selected are illustrative only. There are many different ships within a given type; however, insofar as potential microform applications are concerned, the information requirements would be quite similar. Also, no patrol or service craft have been addressed in this report as they are specifically dedicated, and as far as the present orientation is concerned, their inclusion would not reveal any new areas of application. Table 25 shows the information distribution for non-combatant type ships. It may be seen that certain categories of information are common to different types of ships but exist in yarying amount and degrees of use, The TABLE 23 # Types of Information and Current Format Used by Ships | Тур | es of Information | Current Format | |-----|--|------------------------------------| | 1. | Maps | Paper (sheets) | | 2. | Basic Encyclopedias | Bound hard copy (BHC) | | 3. | National Intelligence Surveys | BHC, microfiche | | 4. | Photo-interpretation Keys | ВНС | | 5. | Intelligence Publications | внс | | 6. | Country and Area Studies | БНС | | 7. | Assigned Targets of War | Film, BHC | | 8. | Operations Plans | Paper documents | | 9. | Characteristics and Performance
Handbooks | внс | | 10. | Air Target Materiel Program | внс | | 11. | Training Materials | BHC, paper, miscellaneous | | 12. | Ships Publications | ВНС | | 13. | Photos | Photos (paper) | | 14. | Charts and Overlays | Paper, acetate, plastic | | 15. | Weapons Manuals | ВНС | | 16. | Operating Manuals | ВНС | | 17. | Technical/Maintenance Manuals | BHC | | 18. | Communication Publications (Coding/Operating/Repair) | ВНС | | 19. | Message Files | Paper documents | | 20. | Registered Publications (RPS) | ВНС | | 21. | Ordnance Characteristics | Paper sheets (loose leaf) | | 22. | Special Information | Paper, miscellaneous | | 23. | Damage Control Information | BHC, paper, plastic control sheets | | 24. | Correspondence Files | Paper sheets (in folders) | | 25. | Report Files | Paper sheets (in folders) | | 26. | COMTACT Publications | внс | ## TABLE 23 (cont.) # Types of Information and Current Format Used by Ships | Туре | s of Information | Current Format | |------|--|--| | 27. | Personnel Records | Paper (in folders) | | 28, | Medica? Records | Paper (in folders) | | 29. | Internal Command Correspondence
Files | Paper (in folders) | | 30. | COSAL | Computer punch cards or paper listings | | 31. | NAVSUP Manuals | внс | | 32. | NAVCOM Manuals | внс | | 33. | Supply Instructions | внс | | 34. | Fleet Commander's Publications | внс | | 35. | FISSG | Paper (listings) | | 36. | NMDL | Paper (listings) | TABLE 24* COMBATANT SHIPS (Warships) | | | | | Repr | esenta | tive Shi | p Func | tions | | |-----------------|---|---|--|----------------------------|----------------------|----------------------------------|----------------------------|----------------|-----------------------| | Type of
Ship | Generaí
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons/
Sunnery/
Ordnance | Engineering | Administration | Logistical
Support | | Carrier (CV) | Support and operate air-craft and act in sup-port of other forces. | 1-13 | 1
(5)
(9)
11
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30-36 | | Cruiser (CG) | Operate inde-
pendently or
with other
forces
against air
and surface
threats. | | (5)
(9)
11-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30-36 | | Frigate (DL) | Operate independently or with other forces against air, surface, or submarine targets. Functions as control center. | 1
(3)
5
(6)
(7)
8
9
11
12
13 | 1
(5)
(9)
11
12
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30-36 | HE DIEVERS HERBEN DE VERTER BESTER VERTER BESTER VERTER BESTER VERTER BESTER BE ^{*}Cell entry numbers refer to categories listed in Tables 23 and 26. TABLE 24 (cont.) COMBATANT SHIPS (Warships) | | | | ~~~ | Repres | entati | ve Ship | Funct | ions | - | |--------------------|---|--|--|----------------------------|----------------------|----------------------------------|----------------------------|----------------|-----------------------| | Type of
Ship | General
Mission | Intelligence | Combat Inform. | Communications | Deck
Operations | Weapons/
Gunnery/
Ordnance | Engineering | Administration | Logistical
Support | | Destroyer
(DD) | Conduct of-
fensive oper-
ations with
other forces
and protect
support forces. | 1
(3)
5
(6)
(7)
8
9
11-13 | 1
(5)
(9)
11
12
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30-36 | | Escort (DE) | Screen support
forces. Oper-
ate offen-
sively against
submarines. | 1
(3)
5
(6)
(7)
8
9
11-13 | 1
(5)
(9)
11
12
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30 -36 | | Small
Combatant | Perform offen-
sive and defen-
sive roles as
directed. | (6)
(7)
8 | (5)
(9)
11
12
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 3036 | | Command (LCC) | Command ship
for
amphibious
operations. | 1
5
8
11
12 | 1
8
12
14
16
17 | 12
18
19
20
26 | 1
1 | 2
6
7
3 | 12
16
17
22
23 | 12
24-29 | 30-36 | TABLE 24 (cont.) COMBATANT SHIPS (Warships) | | | | | Repr | esenta | tive Shi | p Fund | ctions | | |---|---|----------------------------------|--------------------------------|----------------------------|--|----------------------------------|----------------------------|----------------|-----------------------| | Type of
Ship | General
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons/
Gunnery/
Ordnance | Engineer:ng | Administration | Logistical
Support | | Assault Ship-
General
Purpose (LHA) | To embark, deploy, and land elements of marine landing force by various means. | (5)
8
12
14
16
17 | | 12
18
19
20
26 | 12
15
16
17
21
22
23 | | 12
16
17
22
23 | 12
24-29 | 30-36 | | Cargo Ship
(LKA) | To transport and land combat equipment, material, and personnel. | (5)
8
12
14
16
17 | | 12
18
19
20
26 | 12
15-17
21-23 | | 12
16
17
22
23 | 12
24-29 | 30-36 | | Transport
(LPA) | To transport land troops, supplies, and equipment. | (5)
8
12
14
16
17 | | 12
18
19
20
26 | 12
15-17
21-23 | | 12
16
17
22
23 | 12
24-29 | 30-36 | | Dock Landing
Ship (LPD) | To transport troops and equipment and supplies by landing craft and amphibious vehicles with helicopter augmentation. | (5)
8
12
14
16 | | 12
18
19
20
25 | 12
15-17
21-23 | | 12
16
17
22
23 | 12
24-29 | 30-36 | TO ACT AND A SHADE AND ASSESSED AS AS A SHADE AND ASSESSED AS A SHADE AS A SHADE AND ASSESSED AS A SHADE AND ASSESSED AS A SHADE AS A SHADE AS A SHADE AND ASSESSED AS A SHADE A TABLE 24 (cont.) COMBATANT SHIPS (Warships) | | | | ··· | | | | · | | | |--------------------------------------|--|--------------------------------|-----------------------------------|----------------------------|----------------------|----------------------------------|----------------------------|-------------------------|-----------------------| | | | | | Repre | sentat | ive Ship | Funct | ions | | | Type of
Ship | General
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons/
Gunnery/
Ordnance | Engineering | Administration | Logistical
Support | | Assault Ship
Helicopters
(LPH) | To transport and land troops and
es-sential equipment by embarked transport helicopters. | 1-13 | (5)
(9)
11
(13)
14-17 | 12
18
19
20
26 | 12
16
17
23 | 12
15
16
17
21
22 | 12
16
17
22
23 | 12
24-29 | 30-36 | | Landing Ship
(LS) | To transport and land personnel, supplies, and equipment during amphibious assault. | 5
8
12
14
16
17 | | 12
18
19
20
26 | 1
1
1
2 | 2
5
6
7
1
2
3 | 12
16
17
22
23 | 12
24-29 | 30-36 | | Mine Sweeper,
Coastal
(MSC) | To locate and/
or sweep or
neutralize
sea mines. | 8
11
12
14- | • | 12
18
19
20
26 | 1 | 2
5
6
7
-23 | 12
16
17
22
23 | 12
24
25
27-29 | 12
3 1-33 | | Mine Sweeper,
Ocean
(MSO) | To locate and/
or seeep or
neutralize
sea mines. | 8
11
12
14-17 | | 12
18
19
20
26 | 1
1
1 | 2
5
6
7
-23 | 12
16
17
22
23 | 12
24
25
27-29 | 12
31-33 | TABLE 25 ** NON-COMBATANT SHIPS (Auxilliary Ships) | | | Representative Ship Functions | | | | | | | | |-------------------------------------|--|-------------------------------|--------------------------------|----------------|----------------------------|----------------------------------|----------------------|---------------------|-----------------------| | Type of
Ship | General
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons/
Gunnery/
Ordnance | Engineering | Administration | Logistical
Support | | Tender (AD) | To repair and support destroyer type ships | 12
14
19
20
26 | | | 12
23
16
17
A* | | 12
16
17
23 | 12
24 -29 | 12
30-36 | | Ammunition
Ship (AE) | To deliver ammunition to the fleet at sea. | 12
14
19
20
26 | | | 14 12
19 23
20 | | 12
16
17
23 | 12
24-29 | 12
30-36
B* | | Stores Ship
(AF) | To deliver provisions to fleet at sea. | 12
14
19
20
25 | | | 11
12
23 | | 12
16
17
23 | 12
24-29 | 12
30-36
B* | | Miscellaneous
Auxilliary
(AG) | Missions and
tasks are
specific to
each ship. | | 12
14
19
20
26 | | 1 1 2 | 1
2
3 | 12
16
17
23 | 12
24-29 | 12
30-56
B* | in de de la compositione della compositione de la compositione de la compositione de la compositione de la compositione della c A* Repair division; large volume of manuals. B* High volume of accounting and record keeping. ^{**} Cell entry numbers refer to categories listed in Tables 23 and 26. TABLE 25 (cont.) NON-COMBATANT SHIPS (Auxilliary Ships) | p | | | | Repre | sentat | ive Ship | Funct | ions | | |---|---|---------------------------------------|--------------------------------|----------------------------|----------------------------------|------------------------------------|----------------------|---------------------------------|-----------------------| | Type of
Ship | General
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons /
Gunnery /
Ordnance | Engineering | Adminis tration | Logistical
Support | | Missile Range
Instrumen-
tation Ship
(AGM) | To provide support during missile shots and manned space flights. | 12, 1
20,
A* | | 13
18
19
20
26 | (min | imal) | 12
16
17
C* | 12
24-29 | 30-36
D* | | Cargo Ship
(AK) | To transport
dry cargo for
the Armed
Forces. | (negligible)
12, 14, 19,
20, 26 | | | 11
12
16
17
23
E* | (negli-
gible) | 16 | 12
24-29
(mini-
mal) | 30-36
F* | | Oiler (AO) | To replenish petroleum products for fleet at sea. | 12, | gligib
14, 19
, 26 | | 11
12
16
17
23
E* | (negli-
gible) | 16
17 | 12
24-29
(mini-
! mal) | 30-36
F* | A* Negligible. B* Large volume of technical manuals in support of electronic gear. C* Large volume of technical manuals. D* Specialized with respect to mission. E* Deck handling. F* High volume of record keeping. TABLE 25 (cont.) NON-COMBATANT SHIPS (Auxilliary Ships) | | | | | Repres | entat | ive Ship | Funct | ions | | |---------------------|---|--|--------------------------------|----------------------------------|--------------------|----------------------------------|-------------------------------|-------------------------|-----------------------| | Type of
Ships | General
Mission | Intelligence | Combat Inform.
Center (CIC) | Communications | Deck
Operations | Weapons/
Gunnery/
Ordnance | Engineering | Administration | Logistical
Support | | Transport (AP) | To transport troops, supplies, and equipment. | (negligible)
12, 14, 18,
19, 20, 26 | | 11
12
16
17
23
A* | (negli-
gible) | | 12
24-29
(mini-
mal) | 30-36
B* | | | Repair Ship
(AR) | To furnish repair person-nel, facilities and support to various types of ships. | (negligible) 12, 14, 19, 20, 26 (low volume) | | 11
12
16
17
23
C* | (negli-
gible) | 12
16
17
23 | 12
24-29
(mini-
mal) | 30-36
B* | | | Tug (AT) | To tow ships
and craft. | (negligible)
19
(routine/minimal) | | 16
17 | (negli-
gible) | 12
16
17 | 12
24-29
(low
vol.) | 80-36
(mini-
mal) | | A* Dack handling. B* High volume of record keeping. C* Low volume. information may be required for normal operations or it may be provided or acquired on an ad hoc basis in accordance with a given mission or zone of operation. Depending upon the nature of the information involved, it will exist at differing levels of security classification, in various formats, and will be associated with differing modes of acquisition, storage, retrieval, and dissemination. The amenability of information to micromation (the conversion to and use of microform systems) depends upon a variety of factors: (1) how the information is used; (2) what volume of information is involved; (3) file activity patterns—frequency of retrieval; (4) useful life of the information; (5) requirements for information change and updating; (6) security and anticompromise requirements; (7) equipment cost; and (8) others. The above considerations will determine the type of microform format and system which is most appropriate. The key issue is whether micromation will substantially improve operating efficiency and information security at an acceptable level of cost. The security of information in this regard includes protection of classified documents and prevention of loss or misfiling of unclassified materials. As seen in Part II of this report, microform encompasses a wide range of capability from the small, portable viewer which may be used by a technician to the fully automatic storage and retrieval system employing a large central file and video dissemination of information. Between these extremes, there are many intermediate systems of varying capacity and flexibility. At present, microform is in use on various ships but not to the extent that it makes full use of available technology. Table 26 indicates a suitable microform medium for each of the types of information and formats listed in Table 23. ## **FABLE 26** # Suitable Microform for Various Types of Information Used λ board Ships | Typ | es of Information | Microform Suitability | |-----|--|---| | | | | | 1. | Maps | 70mm microfiche (or roll) | | 2. | Basic Encyclopedias | 16mm microfiche (or roll) | | 3. | National Intelligence Surveys | Already on 16mm fiche | | 4. | Photo-Interpretation Keys | 35mm aperture cards | | 5. | Intelligence Publications | 16mm microfiche (or roll) | | 6. | Country and Area Studies | 16mm microfiche (or roll) | | 7. | Assigned Targets of War | Available on 35mm aperture cards | | 8. | Operations Plans | 16mm microfiche (or roll) | | 9. | Characteristics and Performance
Handbooks | 16mm microfiche (or roll) | | 10. | Air Target Materiel Program | 16mm microfiche (or roll) | | 11. | Training Materials | 16mm microfiche (or roll) | | 12. | Ships Publications | 16mm microfiche (or roll) | | 13. | Photos | 35mm or 16mm aperture cards (depending on size of criginal) | | 14. | Charts and Overlays | 70mm microfiche | | 15. | Weapons Manuals | 16mm microfiche (or roll) | | 16. | Operating Manuals | 16mm microfiche (or roll) | | 17. | Tachnical/Maintenance Manuals | 16mm microfiche (or roll) | | 18. | Communication Publications (Coding/Operation/Repair) | 16mm microfiche (or roll) | | 19. | Message Files | 16mm microfiche (or roll) | | 20. | Registered Publications | 16mm microfiche (or roll) | | 21. | Ordnance Characteristics | 16mm microfiche | | 22. | Special Information | Various formats | | 23. | Damage Control Information | 35mm aperture cards | | 24. | Correspondence Files | 16mm roll film | | | | | 16mm roll film Report Files 25. ## TABLE 26 (cont.) # Suitable Microform for Various Types of Information Used Aboard Ships | Types of Information | | Microform Suitability | | | | | | |----------------------|---------------------------------------|--|--|--|--|--|--| | 26. | COMTACT Publications | 16mm microfiche | | | | | | | 27. | Personnel Records | 16mm microfiche | | | | | | | 28. | Medical Records | 16mm microfiche | | | | | | | 29. | Internal Command Correspondence Files | <pre>16mm roll film (for archival records)</pre> | | | | | | | 30. | COSAL | Computerized
on CV, CG. Tender types; otherwise 16mm roll film or microfiche | | | | | | | 31. | NAVSUP Manuals | 16mm roll film | | | | | | | 32. | NAYCOM Manuals | 16mm roll film | | | | | | | 33. | Supply Instructions | 16mm roll film | | | | | | | 34. | Fleet Commander's Publications | 16mm roll film or microfiche | | | | | | | 35. | FISSG | 16mm roll film or microfiche | | | | | | | 36, | NMDL | 16mm roll film or microfiche | | | | | | In general, the majority of microform material would be generated by a shore based installation. There would not be a great need for microfilm production capability aboard most ships. A limited capability, however, would be desirable in dealing with message and correspondence files, where information is generated internally or externally and must be stored/retrieved during a cruise. The majority of publications and reference manuals could go aboard in microform. This would facilitate storage, retrieval, use, and updating. Certain manuals, such as technical and maintenance manuals where the user must be mobile and browsing is necessary, would be best left as hard copy. On tenders and repair ships, however, where equipment is worked on at a specific repair station, and a video or other type of display could be permanently emplaced, microfilm would facilitate access to technical reference data and drawings. ## Micromation of Intelligence and Classified Information Because intelligence information is a vital element of command and control planning and decisions, the need for fast and efficient data handling is essential. For this reason, intelligence operations are typically at the forefront of information technology applications. At the same time, it is necessary that implementation of plans and decisions be just as efficient. In this regard, the merits of micromation need not be differentiated on the basis of the security classification of materials involved, and to do so, would be to lose sight of the systems approach necessary to determine overall operational effectiveness. However, there are two considerations which distinguish classified information. One is the requirement for access control, the other is the need in certain circumstances for emergency destruction of the materials. These considerations have direct implications for microform applications aboard ship. ## Advantages of Classified Information in Microform Reduced Volume and Weight. With large volumes of classified hard copy manually filed and retrieved, it is often necessary to restrict an entire area to achieve the necessary protection. The use of microfilm or microfiche reduces the physical volume of material to be controlled by more than 90 percent. This alone can free precious space for other use. Since classified information is normally kept in safes and containers of appreciable weight, further advantage is gained in conversion to microform. The savings in weight of containers may be added to that gained by eliminating the bulk paper. <u>File Security</u>. Depending upon the type of system involved, physical access to the file records may be limited to one or more key individuals. The user merely views a display and in many instances would have no need for the actual documents. If required, however, hard copy can be generated in seconds at a central file or at remote stations. The hard copy may be destroyed according to standard procedures when it has served its purpose. With sophisticated systems, it is possible to video transmit information from a central file on one ship to other ships within range, reducing the need for duplicate files and risk of information compromise. THE PROPERTY OF O With large documents, it is difficult to determine whether one or more pages may be missing. On microfilm, the completeness of a document may be verified in seconds. Also, access to viewing equipment, as well as the file, may be restricted providing another degree of safeguarding. Emergency Destruct Capability. Generally speaking, it would appear that emergency destruct would be easier and faster with a small volume of microfilm or microfiche than a large volume of hard copy. Consider trying to destroy a single file drawer of microfilm as compared to the corresponding ten drawers of paper. Also, with microform, the feasibility of in-place destruction would seem to be greater. The destruction of aperture cards, microfiche, and microfilm in its varying containers (cartridges, cassettes, spools, etc.), however, presents different problems than hard copy. Film destruction studies have been conducted by various government agencies but much of the work is classified. At present, methods for destroying film are still in the exploratory stage. Paper destruction, however, is no better off with much reliance still placed on crude pyretechnics. Because microform contains so much more information than paper per unit area, destruction must be more thorough. Also, manufacturers have been working for years to extend the life and durability of film, making it more difficult to destroy than many types of paper. Because of the lesser volume of film involved, and the fact that different physio-chemical methods may be applied to film, its potential value for emergency destruct procedures should be fully explored. A CONTROL OF CON Rather than approaching film as another form of paper to be burned, it may be possible to develop a special type of film base, emulsion, or both for use on classified material. Intelligence information, insofar as shipboard use is concerned, may have a limited useable life span equal to the duration of a cruise or less. Therefore, it may be entirely possible to trade durability for emergency destruct efficiency. As an alternate approach to in-place destruction of microform materials, one may readily conceive of special disposal devices to which the relatively small volume of film may be easily and quickly transferred. Such devices may be located adjacent to microform files. The problem of film destruction requires study to identify the proper methods, materials, and devices to be employed over a wide range of operational conditions. ### STUDY CONCLUSIONS AND RECOMMENDATIONS - 1. The current volume and use of hard copy aboard ships would appear amenable to conversion to microform in many areas. - 2. With proper study, it should be possible to justify micromation in terms of cost, operating efficiency, and increased file security. - 3. Current microform technology provides an adequate range of equipment and capabilities which can be readily matched to user requirements from carrier type ships on down. - 4. Microform equipment, especially readers and reader-printers, is vulnerable to the stresses associated with the shipboard environment. Such equipment must be isolated from ambient vibration or constructed internally such that ambient vibration is not amplified to the point where it noticeably degrades display images. voluntus servet tronscent on the control of con - 5. Microform viewers intended for shipboard use should have the following features: - (1) Maximum screen brightness of at least 80 ft-L; - (2) Continuous brightness adjustment control from 0 to maximum screen brightness; - (3) Non-glare type viewing screens; - (4) Focus controls which are not overly sensitive; - (5) Provision for protection of the viewing screen from extraneous light and/or glare sources such as a shield or curtain arrangement; - (6) Provision for use of a red filter for operating under red-light conditions. Brightness adjustment or installation of the filter should not require the user to view an illuminated projection lamp or other brightly illuminated element of the system; - (7) Readers to be used under red-light conditions should be light-tight, i.e., no light leaks; - (8) Controls and contours should be designed to minimize sharp edges, corners, and projections which may injure a user upon impact. Such impact could occur during high speed maneuvers or in rough water. - 6. Microform affords advantages in the area of document security and anticompromise measures. Reduced bulk represents an initial advantage. Research should be conducted to determine the most efficacious method of microform emergency destruction. Such research should consider not only the destruction of standard film (e.g., polyester) but the development of special film for use with short-lived intelligence and classified materials. Also, the research should explore the potential for in-place destruction methods offered by the various microform systems. #### BIBLIOGRAPHY - Allen, G. E., Jr.: Microfilm for engineering drawings at Scientific Atlanta, Inc. National Microfilm Association Journal, Winter 1968, 1(2), 60-62. - Anîtal, J. R.: A potential buyer looks at COM. The Journal of Micrographics, Winter 1969-70, 3(2), 79-84. - Ballou, H. W.: <u>Guide to microreproduction equipment</u>. (4th Edition) 1968, National Microfilm Association, Annapolis, Md., 493 pg. - Ballou, H. W.: What to look for in a reading machine. American Library Association Bulletin, 1961, 55, 67-69. - Bell, G. L.: The effects of symbol frequency in legibility testing. Human Factors, 1967, 9(5), 471-478. - Bijmans, B. P. E. M.: Bibliography or microfiche. No. 4. Microfiche Foundation, Delft, The Netherlands, September 1965. - Block, G. A., Gentry, G. G., & Field, J. V.: Two studies of the effect of film polarity on patent examiners' performance. Institute for Applied Technology, National Bureau of Standards, U.S. Department of Standards, Washington, D.C., 1968. (PB 180 720) - Brown, H. E., Collins, F. A., & Hawkins, J. A.: Analysis of optical and electro-optical imaging systems using modulation transfer functions. DRL-TR-68-13. The University of Texas, Austin, Texas. March 1968. (AD 832 159) - Buchanan, R. C.: The use of microfilm for office record retention at Callaway Mills Company. National Microfilm Association Journal, Winter 1968, 1(2), 58-60. - Chapanis, A., & Scarpa, L. C.: Readability of dials
at different distances with constant visual angle. <u>Human Factors</u>, 1967, 9(5), 419-426. - Clapp, V. W. & Jordan, R. T.: Re-evaluation of microfilm as a method of book storage. College & Research Libraries, January 1963, 5-15. - Committee on Scientific and Technical Information. Federal microfiche standards. Federal Council for Science and Technology, Committee on Scientific and Technical Information, April 1968. (PB 167 630) - deBruin, J. H. I.: Microfiche equipment. No. 10. (2nd Revised Edition) Delft, The Netherlands, August 1968. - Defense Documentation Center: Microfiche, microfilm, and related equipment. Vol. I. Defense Documentation Center, Alexandria, Va. July 1968. (AD 675 300) - Defense Documentation Center: A Buyer's Guide for microfilm reader evaluation. Defense Documentation Center, Alexandria, Va. May 1968. - Department of the Navy: Mechanical vibration of shipboard equipment. MIL-STD-1678(Ships). 11 August 1969. - Eastman Kodak Company: Experimental aperture card search reader. Proposal #7-35430. Eastman Kodak Company, Rochester, N.Y. Prepared for U.S. Patent Office, Washington, D.C. April 1967. - Gordon, R. F.: Microfiche viewing equipment. Defense Documentation Center, Alexandria, Va. March 1970. - Hawken, W. R.: Microform standardization: The problem of research materials and a proposed solution. National Microform Association Journal, Fall 1968, 2(1), 14-27. - Hayes, R. M.: Information retrieval: An introduction. <u>Datamation</u>, March 1968, 22-25 - Heilprin, L. B.: Communication engineering approach to microforms. American Documentation, July 1961, 213-218. - Janda, K.: Political research with Miracode: A 16mm microfilm information retrieval system. National Microfilm Association Journal, Winter 1968, 1(2), 41-47. - Judisch, J. M.: The effect of positive-negative microforms and front-rear projection on reading speed and comprehension. <u>National Microfilm</u> Association Journal, Winter 1968-69, 2(2), 58-61. - Kinney, G. C.: Studies in display legibility. USAF: ESD TR65-406, 1966. - Kiriyama, I., & Teplitz, A.: Introduction to microfilm systems. TM 1987/000/01, System Devel. Corp., Santa Monica, Calif., November 1964. - Mallender, I. H.: Digital methods of microfilm communication. The Journal of Micrographics, Fall 1969-70, 3(1), 20-35. - Menkhaus, E. J.: Microfilm captures more of the action. <u>Business Automation</u>, May 1967, 16(5), 40 45. - Merritt, C. A.: Micro today and tomorrow in information retrieval. National Microfilm Association Journal, Spring 1969, 2(3), 108-110. - Nanney, T. G.: Using microfilm effectively. Geyer-McAllister Publications, Inc., 1968. - Nauer, R. S.: Reference it; retrieve it; reproduce it. Systems and Procedures Journal, March-April 1968, 32-36. - Nelson, C.: Microfilm Technology. New York: McGraw-Hill, 1965. - Peeters-Houterman, H. F.: Bibliography on microfiche. No. 9. Microfiche Foundation, Delft, The Netherlands, July 1968. - Peeters-Houterman, H. F.: Bibliography on microfiche. No. 6. Microfiche Foundation, Delft, The Netherlands, May 1967. - Robertson, J. R.: A rational approach to COM. The Journal of Micrographics, Winter 1969-70, 3(2), 73-77. - Rubin, J.: <u>International directory of micrographic equipment</u>. International Micrographic Congress, Saratoga, Calif., 1967. 519 p. - Rubin, J.: The viewing characteristics of negative vs. positive microfilm images as they affect visual fatique. National Micro-News, January 1957, 29. - Schecter, G. (Ed.): <u>Information retrieval</u>: A critical view. Washington, D.C.: Thompson Book Co. 1967. 282 p. - Shurtleff, D.: Design problems in visual displays: I. Classical factors in the legibility of numerals and capital letters. USAF: ESD TR 66-62, 1966. - Smitzer, L. A.: Looking ahead in microfilm and information retrieval. National Microfilm Association Journal, Spring 1959, 2(3), 77-82. - Stahl, N.: Problems and opportunities with microfilm. <u>The Journal of Micrographics</u>, Winter 1969-70, 3(2), 66-69. - Systems Development Corporation: Microfiche and retrieval system study: Final Report. TM-WD-(L)-355/000/01. Systems Development Corporation, Falls Church, Va., August 1970. (AD 710 000) - Teplitz, A.: The design of microfiche systems. <u>Human Factors</u>, 1970, 12(2), 225-233. - Teplitz, A.: Microfilm and information retrieval. SP-3243/000/00. System Development Corporation, Santa Monica, Calif., October 1968. (AD 680 111) - Teplitz, A.: Microfiche for technical information dissemination. Costbenefit analysis. System Development Corporation, Santa Monica, Calif., December 1968. (PB 184 365) - Teplitz, A.: Library fiche: An introduction and explanation. SP-2922/000/01. System Development Corporation, Santa Monica, Calif., October 1967. (AD 661 660) - Tomlin, R. I., & Brunner, R. G.: A total information concept: Rapid retrieval of microfilmed documents using an optical coincidence system. National Microfilm Association Journal, Spring 1969, 2(3), 102-104. - Ullrich, O. A., & Walkup, L. E.: Psychophysical aspects of microimage reading. Reproduction Methods, November 1966, 6, 50-52. - United Nations: United Nations microfiche standard. ST/PB/28, 1968. - Ver Hulst, J.: An approach to the development of a large volume microform dissemination library system. National Microfilm Association Journal, Spring 1969, 2(3), 111-112. - Verry, H. R., & Wright, G. H.: <u>Microcopying methods</u>. (Revised Ed.) New York: Focal Press, 1967. 183 p. - Walkup, L. E., Ullrich, O. A., Stock, J. R., & Dugan, J. M.: The design of improved microimage readers for promoting the utilization of microimages. Proceedings of the National Microfilm Association. National Microfilm Association Journal, 1962, 11, 283-310. - Wheeler, W. D.: Microfiche--A progress review. Microfiche Foundation Newsletter, February 1970, 21, 7-9. - Williams, C. M.: Legibility of numbers as a function of contrast and illumination. Human Factors, 1967, 9(5), 455-460. - Williams, W. F.: <u>Principles of automated information retrieval</u>. Elmhurst, Ill.: The Business Press, 1965. 439 p. - Wooster, H.: Microfiche 1969--A user survey. Air Force Office of Scientific Research, July 1967. 205 p. (AFOSR-69-1847TR). - Zummo, R. M., & Lofquist, W. S.: Microforms: A growth industry. U.S. Government Printing Office, Washington, D.C. 24 p. | Security Classification | | | | | | |---|---|------------------|--|--|--| | DOCUMENT CONTR | OL DATA - R 8 | D | | | | | Security classification of title, hody of abstract and indexing a | nnotation niuxi be et | | The state of s | | | | Psytronics, Inc. | 20, REPORT SCURITY CLASSIFICATION | | | | | | 9308 Convento Terrace | UNCLASSIFIED | | | | | | Fairfax, Virginia | ≥Ł GROUP | | | | | | 1 REPORT TITLE | | L | | | | | MICROFORM DISPLAY PARAMETERS AND SYSTEMS I | N THE SHIPBO | DARD ENVIR | ONMENT | | | | | | | | | | | | | | | | | | 4 DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | | | Final Report 5 AUTHOR(S) (First name, middle initial, last name) | | | | | | | | | | | | | | Raymond E. Reilly, Ph. D. | | | | | | | C. L. Tipton | | | | | | | 6 REPORT DATE | 78. TOTAL NO OF PIGES IN NO OF REFS | | | | | | March 1971 | 164 pages 59 refs. | | | | | | | M. CRIGINA TOR'S REPORT NUMBER(5) | | | | | | N00014-70-C-0384 | N/A | | | | | | 6 PPOJECT NO | | | | | | | c. | 15. OTHER REPOR | 11 40(5) (Any or | her numbers that may be assigned | | | | | this report) | | | | | | d | N/A | | | | | | 10 DISTRIBUTION STATEMENT | | | | | | | This document has been approved t | for public re | elease and | sale: | | | | its distrubution is unlimited. | | | | | | | 11 SUPPLEMENTARY NOTES | 12. SPONSORING N | ALLITA IY ACTIV | /! * v | | | | N/A | Naval Research Laboratory | | | | | | 11/14 | Naval Ordnance Systems Command (ORD-03) | | | | | | 11 465-440- | | | (5.12.00) | | | This study examines the Parameters which
contribute to legibility of rear-projection display systems common in the shipboard environment. The results show the manner in which the optical and physical parameters interact to affect operator reading performance. Tables derived allow for evaluation of the relative importance of each parameter and trade-offs among combinations of variables. Currently available microform equipment and retrieval systems are summarized and discussed in action to information used aboard various types of ships. information format and type of microform applicable to each. Conclusions and recommendations are made concerning the adequacy of available microform equipment for shipboard use, desirable features of equipment to be used in that environment, implications of microform for increased document security, and its potential for improved anticompromise measures. DD FORM 1473 (PAGE 1) N 5101-807-6801 UNCLASSIFIED Security Classification Control of the contro Security Classification | | Security Classification | | | | | | | | |-----|--|----------|----------|----------|----------|----------|---------|--| | 1.4 | V 81 W W 8 18 18 | LIN | K A | LINK B | | LINK C | | | | 1 | KEY WORDS | ROLE | | | ROLE WY | | ROLE WT | | | | | | <u> </u> | 7022 | | MOLE | W 1 | | | | | | | | | l i | | | | | | | | | | | | | | | Microform systems localinment | | | | | | | | | | Microform systems/equipment | | | | | | | | | | Microform applications | | | | | | | | | İ | Rear projection legibility | [| | | | | | | | | legibility under wibration | | | | | i | | | | | Microform dienlay decian | | | , | | | | | | ļ . | ricrotoriii dispiay design | 1 | | | | | | | | | Microform systems/equipment Microform applications Rear projection legibility Legibility under vibration Microform display design Microform legibility Microform aboard ship Image resolution, color, brightness, size | | | | ļ | | | | | | Microform aboard ship | i | | | | | | | | | Image resolution, color, brightness, size | 1 | | | | | | | | | | | | | | 1 | ĺ | | | l | | | | | | | { | | j | | | | | | | | l | |] | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | 1 | | | | | | | | | | l | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | ļ | | | | | 1 | | <u> </u> | | | | [| | | | | | 1 | | | | 1 | | | | | | | | İ | | | | | | 1 | | | | ĺ | | | | | | | | | | | 1 | | | | | ł | | | | | | | i
I | | | | | 1 | ļ | | | <u> </u> | | | | | | | İ | Į | | | | | | | | | į | | | | | | | | | | | | l | | | | | | | | i | İ | | | | | | | | | | | !
! | İ | 1 | | | | ł | | 1 | • | ! | 1 | 4 | | | | l | | | | } | | | | | | | | į | į : | | 1 | | | | | | | | 1 | l | | (| | | | | | | | | | | | | | | | | | Ĭ | | [| | | | | | 1 | | Ì | i | } | | | | Ī | | 1 | Į | ł | l |] | | | | | | ļ | I | } | | Į į | | | | | | į | 1 | İ | | | | | | | | 1 | ł | 1 | l | |)
 | | | | | İ | l |] | 1 | ļ | | | | | | | l | 1 | | i | | | | | | 1 | ł | 1 | 1 | ĺ | | | | į | | | 1 | ł | l | [| | | | | | | 1 | i | 1 | | | | | | | 1 | l | ł | 1 | | | | | | | | l | 1 | 1 | | | | | Į | | | i | 1 | | | | | | | | 1 | l | | 1 | | | | | l | | | 1 | į | ļ | | Ì | | | | | 1 | 1 | | 1 |] | | | | ł | | | 1 |] | l | | | | | | | 1 | 1 | l | I | 1 | I | | DD FORM 1473 (BACK) UNCLASSIFIED (PAGE: 2) TOTAL OF THE AND ADDRESS OF THE PROPERTY TH